



## Review

## Decarbonizing the iron and steel industry: A systematic review of sociotechnical systems, technological innovations, and policy options



Jinsoo Kim <sup>a,\*</sup>, Benjamin K. Sovacool <sup>b,c, \*\*</sup>, Morgan Bazilian <sup>d</sup>, Steve Griffiths <sup>e</sup>, Junghwan Lee <sup>a</sup>, Minyoung Yang <sup>a</sup>, Jordy Lee <sup>d</sup>

<sup>a</sup> Department of Earth Resources and Environmental Engineering, Hanyang University, Republic of Korea

<sup>b</sup> Science Policy Research Unit (SPRU), University of Sussex Business School, United Kingdom

<sup>c</sup> Center for Energy Technologies, Department of Business Development and Technology, Aarhus University, Denmark

<sup>d</sup> Colorado School of Mines, CO, United States

<sup>e</sup> Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

## ARTICLE INFO

## Keywords:

Climate change  
Climate mitigation  
iron and steel  
Industrial decarbonization  
Energy policy  
Sociotechnical system

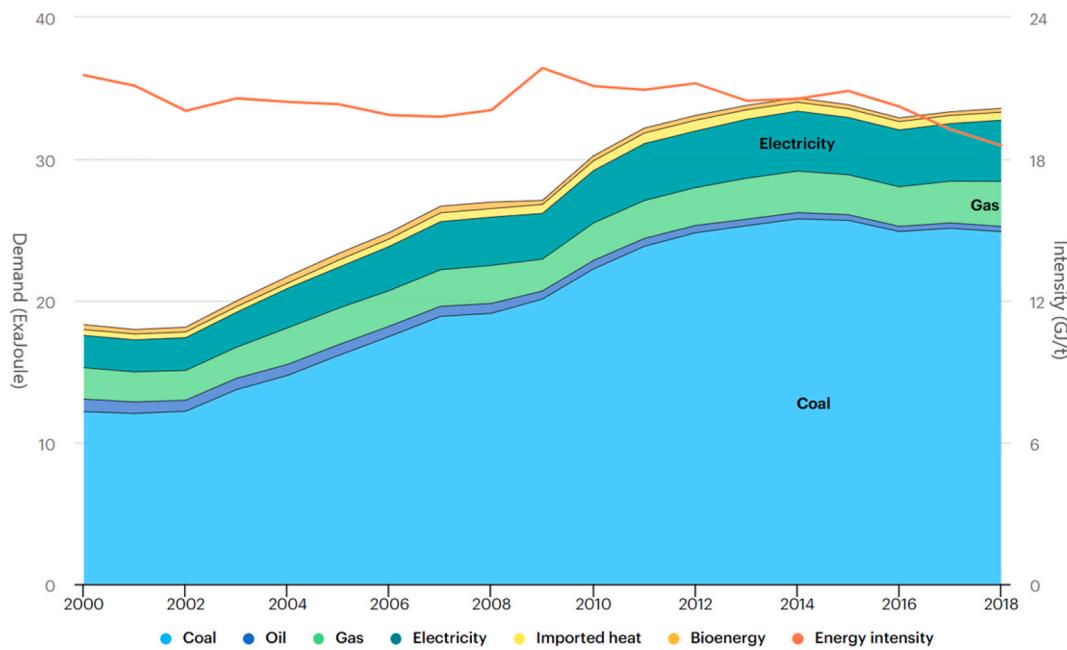
## ABSTRACT

The iron and steel industry is the largest coal consumer and the most greenhouse gas intensive industry. It consumes about 7% of global energy supply, and conservative estimates report that it is responsible for 7–9% of global greenhouse gas emissions. Decarbonization of the iron and steel industry is thus vital to meet climate change mitigation targets and achieve a sustainable future for the industry. This paper presents a comprehensive and systematic review that considered more than 1.6 million pieces of literature and analyzes in depth a shortlist of 271 studies on the iron and steel industry's decarbonization. Applying a sociotechnical lens that investigates raw materials, iron and steel making processes, steel products making and usage, and waste and recycling, the review identifies the climate footprint of the iron and steel industry. The review also assesses current and emerging practices for decarbonization, identifying 86 potentially transformative technologies. The benefits of decarbonizing the iron and steel industry are considered through energy and carbon savings, financial savings, and other environmental and public health benefits. Barriers to decarbonization are considered across financial, organizational, and behavioral aspects. The review also discusses various financial tools and policy instruments that can help overcome the barriers. Lastly, research gaps are outlined.

## 1. Introduction

Modern life is surrounded by iron and steel. Buildings, skyscrapers, bridges, power transmission towers, airplanes, vehicles, and ships all use significant amounts of iron and steel in their construction. As a result, iron and steel demand has increased more than threefold since 1970, and accounts for 95% of all metal produced annually in the world [1]. Iron and steel are also an essential ingredient for energy transitions and decarbonization. Renewable energy sources such as wind turbines are 71–79% steel, and solar panels, geothermal plants, and electric vehicles also depend heavily on iron and steel products.

As steel is essential for modern economies and developing technologies, steel demand is expected to grow substantially in the coming years due to its direct relationship to population, GDP growth, and overall industrialization [2]. Economic expansion of emerging economies in


India, ASEAN countries, and Africa will add to the demand trends already exhibited by the US, Europe, and China. Iron and steel production will therefore play an essential role in ensuring that billions of people will be able to improve their quality of life in the coming decades.

In the manufacturing of these essential goods, iron and steel, necessitates huge energy inputs. As Fig. 1 indicates, the iron and steel sector used 33.57 Exajoules of energy in 2018 [3], and energy cost constitutes a significant portion of steel manufacturing costs, ranging from 20% to 40% [4], which explains why many decarbonization options are related to energy saving. Critically, the iron and steel industry is the second largest consumer of coal, next to electricity generation. Coking coal is used for chemical reactions in furnaces to make steel from iron ore, so up to 75% of the energy content used in steel production is consumed in the blast furnace. The remaining 25% offers heat at the sinter and coking plants [5].

\* Corresponding author.

\*\* Correspondence to: B.K. Sovacool, Science Policy Research Unit (SPRU), University of Sussex Business School, United Kingdom.

E-mail addresses: [jinsookim@hanyang.ac.kr](mailto:jinsookim@hanyang.ac.kr) (J. Kim), [B.Sovacool@sussex.ac.uk](mailto:B.Sovacool@sussex.ac.uk) (B.K. Sovacool).



**Fig. 1.** Energy demand and intensity of the global iron and steel industry (2000–2018).

Source: [3].

Thus, it is perhaps inevitable that the iron and steel industry is highly responsible for global greenhouse gases (GHGs) emissions and thus contributions to climate change. The iron and steel sector emits 2.6 Gt CO<sub>2</sub>e annually, which is 7% of the global emissions from the energy use and 7–9% of global anthropogenic CO<sub>2</sub> emissions—the highest among heavy industries [6].

Iron and steel are also considered as one of hardest industries to decarbonize due to high heat requirements, using carbon as a process input, low profit margins, high capital intensity, long asset life, and trade challenges. There are no easy ways to create large amounts of heat energy for many iron and steel processes without also releasing CO<sub>2</sub> emissions, and coal is often used both as a source of heat and as part of the production processes. Similarly, the decades-long life cycles of iron and steel plants, the lack of clear financial incentives for decarbonization, and price volatility make it difficult to incorporate carbon reducing technologies.

Many institutions, such as the International Energy Agency (IEA) [6], European Steel Association [7], Lawrence Berkeley National Laboratory [8], Boston Consulting Group [9], and WSP and Parsons Brinckerhoff/ DNV GL [10], have published carbon mitigation options and technology roadmaps for the industry's decarbonization.

When outlining their 2020 technology roadmap towards more sustainable steelmaking, the IEA suggested four core technology groups; carbon capture, utilization and storage (CCUS), hydrogen, direct electrification, and bioenergy [6]. Hydrogen would be effective for CO<sub>2</sub> mitigation in various iron and steel processes, such as BF (blast furnace), DRI (direct reduced iron), smelting reduction, and ancillary procedures [11,12]. Electrolysis [13], torrefied biomass [14], and charcoal [15] are also good options for the decarbonization of steelmaking processes.

Because of the iron and steel industry's energy-intensive nature, pursuing efficiency and energy-saving has been the top priority of the industry. Unfortunately, the iron and steel industry's potential for decarbonization is through process efficiency alone is limited since current iron and steelmaking processes have been efficiently operated (from an industry standpoint) close to their thermodynamic limits [9,16]. Thus, it is quite natural that there is only a small room to improve energy efficiency and related decarbonization. Moreover, Chinese blast furnaces, which account for over 50% of all ironmaking facilities, are heavily reliant on CO<sub>2</sub>-intensive coal electricity and are

relatively young, around 12 years old on average [6], so replacing them with more efficient equipment is not economical.

The combination of iron and steel's importance in modern society and the difficult of decarbonizing steel supply chains necessitate a comprehensive review of decarbonization efforts within the iron and steel industry through a systematic review and rigorous interdisciplinary approach. It asks: Which options are available and promising for the decarbonization of the iron and steel industry, and thus make the industry more climatically sustainable? What are the key factors of the industry's energy consumption and GHG footprints? What are the benefits from the decarbonization of the iron and steel industry, and what barriers will be faced? To answer these questions, we undertake a critical, in-depth review of 269 studies shortlisted from more than 1.6 million studies on the topic of iron and steel decarbonization. Based on the review results, we propose a new sociotechnical lens to examine the industry's decarbonization options—raw materials, iron and steel making processes, steel products manufacture, recycling, and use—, and identify promising innovations, benefits, barriers, policy options, and future agendas using this lens.

Although there are insightful reviews for the decarbonization of the iron and steel industry, focusing on energy saving [17], blast furnace [18], and specific projects [19], for example, the systematic search and critical review process presented in Section 3 make our review more comprehensive. Moreover, the sociotechnical lens can provide an organized perspective of the promising decarbonization options for the whole value chain of the industry and related society. Thus, our review can contribute to the literature by providing an informative review framework and extensive decarbonization innovations.

Also, our review results identify that many effective decarbonization options across the four sociotechnical systems can make the iron and steel industry carbon-neutral and sustainable. In particular, 86 emerging breakthroughs and transformative innovations (Section 5.5) and cross-cutting solutions (Table 10 and Fig. 26) have great potential for the low carbon future of iron and steel production. Still, there are economical, organizational, and behavioral barriers (Section 7) to iron and steel decarbonization despite being technologically feasible and having substantial benefits (Section 6). We conclude our review by showing the interventions, benefits, barriers, and policies for decarbonizing the iron and steel system in a single figure (Fig. 30).

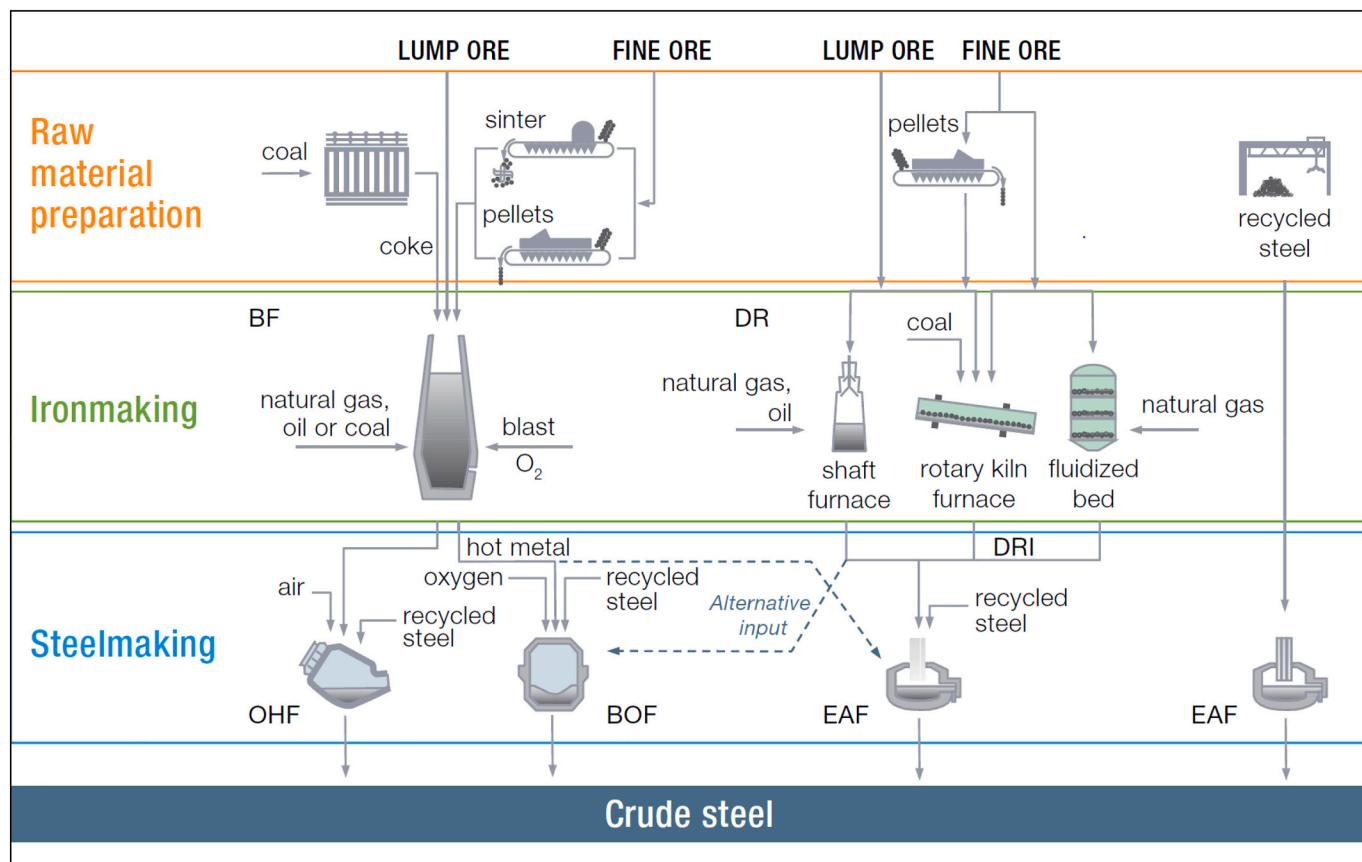



Fig. 2. Iron and steelmaking routes.

Source: [5]. Note: BF is blast furnace, DR is direct reduction, BOF is basic oxygen furnace, EAF is electric arc furnace, OHF is open hearth furnace, and DRI is direct reduced iron.

Table 1

Crude steel production by route (major steel producing countries, 2018).

| Country     | Production (million tonnes) |       |     |        | % of total production |      |     |       |
|-------------|-----------------------------|-------|-----|--------|-----------------------|------|-----|-------|
|             | BOF                         | EAF   | OHF | Total  | BOF                   | EAF  | OHF | Total |
| China       | 893.3                       | 103.2 |     | 996.5  | 89.6                  | 10.4 |     | 100   |
| India       | 48.7                        | 62.7  |     | 111.4  | 43.7                  | 56.3 |     | 100   |
| Japan       | 75.0                        | 24.3  |     | 99.3   | 75.5                  | 24.5 |     | 100   |
| USA         | 26.6                        | 61.2  |     | 87.8   | 30.3                  | 69.7 |     | 100   |
| Russia      | 45.9                        | 24.1  | 1.7 | 71.7   | 64.0                  | 33.7 | 2.3 | 100   |
| South Korea | 48.7                        | 22.7  |     | 71.4   | 68.2                  | 31.8 |     | 100   |
| Germany     | 27.7                        | 11.9  |     | 39.6   | 70.0                  | 30.0 |     | 100   |
| Total       | 1165.9                      | 310.1 | 1.7 | 1477.7 | 78.9                  | 21.0 | 0.1 | 100   |

Source: Compiled by the authors from [22]. Note: BOF, EAF, and OHF are basic oxygen furnace, electric arc furnace, and open-hearth furnace, respectively.

Section 2 provides background for the iron and steel industry, while Section 3 summarizes the research design for a systematic literature review. Section 4 depicts energy and emission profiles, and Section 5 examines promising decarbonization options. Section 6 describes the benefits in three categories, and Sections 7 and 8 discuss barriers and policy instruments. Section 9 presents research gaps and future agendas, and Section 10 concludes.

## 2. Definitions and attributes of the iron and steel industry

### 2.1. Definitions and terms

Modern steelmaking procedures can be divided into four routes: blast furnace/basic oxygen furnace (BF/BOF), electric arc furnace (EAF), direct reduction, and direct melting of scrap in an

EAF [8,20]. BF/BOF accounted for about 65% of the world steel production in 2010, and the EAF route accounted for about 30% in 2010 [8]. In Europe, 58.3% of steel was produced by the BF/BOF, whereas 41.7% were from the EAF [21]. Fig. 2 shows simplified iron and steelmaking routes, and Table 1 presents crude steel production by the route.

Our review covers the iron and steel industry from raw materials to waste/recycling of steel products. It does not examine the mining industry for iron ore, coking coal, or alloying elements required for steel production. Although the overall GHG emissions from mining industries have little attention than the other heavy industries [23], there could be effective options to mitigate carbon emissions, such as clean haul truck powertrain technologies, shovel operator efficiency improvements, and high-pressure grinding rolls technology for iron mining. One study reported that applying these decarbonization technologies can reduce 10% of the total cumulative GHG emissions from the Canadian iron

**Table 2**

Overview of the iron and steel making processes.

| Process                         | Sub-components             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Raw material preparation        | Sintering                  | Sintering is a combustion process with a mixture of iron ore fines, iron-bearing wastes, and coke dust. In a blast furnace (BF), the mixture is converted into coarse lumps (sinter) through incipient fusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 | Pelletizing                | For the iron-rich ore preparation, the iron ore must be crushed and ground to remove impurities in the pelletizing process. After removing impurities, the iron-rich ore is mixed with a binding agent, and heating them makes durable marble-sized pellets. We can use these pellets in both BFs and direct reduction.                                                                                                                                                                                                                                                                                                                                                 |
|                                 | Coke Making                | Coke, made by the thermal distillation process of coal at high temperatures without air, has a high carbon content. Coke is a fuel in a BF, while provides a reducing atmosphere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ironmaking                      | Blast Furnace (BF)         | Iron ore, coke, and limestone are fed into the top of a giant shaft furnace, blast furnace. The materials constitute “alternating layers” in the BF supported by an intense coke bed. Iron is refined in the BF by the following processes: Hot air passes through the porous bed from the furnace’s bottom to the top, and the air ignites the coke, which produces additional heat and carbon monoxide (CO) gas. The high heat melts the materials, and the CO gas eliminates the iron ore’s oxygen, making hot metal. The hot metal, flowing to the bottom of the BF, is regularly tapped, and transported to the basic oxygen furnace, and then refined into steel. |
|                                 | Direct Reduction           | Direct reduction is the process that removes oxygen from solid-state iron ore. Natural gas and coal are common reducing agents, but different reducing agents, feedstocks, and furnaces could be utilized for direct reduction. Direct reduced iron (DRI) is the end-product of this process.                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | Smelting Reduction         | As an alternative to the BF, smelting reduction iron (SRI) produces liquid iron. SRI can also reduce energy-intensive materials such as coke and sinter. Instead, smelting reduction is aimed at using coal and iron fines. COREX, FINEX, and ITmk3 are representative examples of SRI.                                                                                                                                                                                                                                                                                                                                                                                 |
| Steelmaking                     | Basic Oxygen Furnace (BOF) | The transported hot liquid metal from the BF is converted into steel in the BOF. Oxygen is added to eliminate carbon from the hot liquid metal in the process. There are extensive metallurgical processes for BOF to improve steel quality.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | Electric Arc Furnace (EAF) | When producing steel from DRI, pig iron, or ferrous scraps (recycling), an electric arc furnace (EAF) is mainly applied. Carbon electrodes in the furnace roof move up and down to provide the necessary energy in the EAF. The EAF consumes much lower energy (electricity) than the other processes since the energy-intensive iron ore reduction is not required. The EAF can also be utilized for various scrap types.                                                                                                                                                                                                                                              |
| Casting, Rolling, and Finishing |                            | The crude, molten steel from BOFs or EAFs is transferred to the (continuous) caster and formed into semi-finished steel. In rolling or finishing mills, this semi-finished steel is processed into final steel products, such as coil, sheets, or strips (see Fig. 3).                                                                                                                                                                                                                                                                                                                                                                                                  |

Source: Authors compilation and modification from [6,8,20].

mining industry for 2018–2050 [24].

Table 2 offers an overview of the four classifications of iron and steel production and their sub-components.

The “crude steel” in Fig. 2 is the steel in its first solid form after casting in the final furnace—BF or EAF. As shown in Fig. 3, liquid steel is commonly continuously cast into slabs (semi-finished steel products cut into various lengths, flat products), billets (semi-finished steel products with a square cross section up to 155 mm × 155 mm), and blooms (semi-finished steel products with a square cross section above 155 mm × 155 mm) [25]. These semi-finished products may be transported to other sites for further processing, or converted to finished steel products in processing plants, often in a separate facility or company. Conversion to finished products can involve various processes such as rolling, forming, pressing, cutting and bending, with some finished products requiring more steps than others (for example, successive rounds of rolling—hot and cold—and coating). Key finished products include coil, sheets, strips, wire, bars, rods, tubes, pipes, rail and plated/coated versions of each of these products [6].

## 2.2. Industry revenues and structure

The iron and steel sector is a globally extensive, and massive socio-technical system with a significant impact on our modern life. It directly employs more than six million people and engages a total of 40 million indirect jobs if counting supportive positions throughout the whole supply chain [27,28] with 5.8–7.9 multipliers for jobs [29]. The iron and steel industry generates about \$2.5 trillion in global revenue, which is 3.0% of global Gross Domestic Product [6]. Also, steel products are one of the most widely traded commodities in the global market. Fig. 4 depicts steel production by product and demand segment, indicating that buildings and infrastructure account for about half of steel demand [6].

As presented in Table 1, China accounts for over 53% of the world steel production, followed by India, Japan, the USA, Russia, South

Korea, and Germany. The top seven producer countries account for about 79% of global production [22]. Fig. 5 illustrates existing iron and steel making infrastructure by production route and region. This China-dominated production split is a natural result of the fact that over 50% of the existing production equipment is in China, followed by India at around 5%. Fig. 5 also depicts the average age of iron and steelmaking equipment, and shows that Chinese blast furnaces, which account for over 50% of all facilities, are relatively young at around 12 years on average [6]. This is because the expansion of the iron and steel industry in China began around 20 years ago, and thus replacing the furnaces and equipment with new, efficient equipment would not be economically viable.

## 2.3. Distinguishing attributes

Apart from its energy and carbon intensive nature, the iron and steel industry is distinguished from other industries by four features. It is a consolidated industry, produces intermediate goods for other sectors, has a high recycling rate, and needs high temperatures compared to the other manufacturing industries, including primary metals [30].

The iron and steel industry has economies of scale that often require consolidation and agglomeration [10,31]. This increasing returns to scale attribute makes the industry consolidated. Consequently, most iron and steel is coming from only a few players/countries, as shown in Fig. 5. The top 50 companies in the industry produced 58.5% of crude steel (1060.2 million tons) in 2019 [32].

Typically, end-users do not consume the iron and steel products—crude steel, slab, billet, or bloom—directly. These steel products are supplied to automobile, shipbuilding, plant, pipeline, and building and construction sectors as intermediate goods. Therefore, the iron and steel industry’s decarbonization has great potential to reduce indirect emissions from those other industries [33,34].

A high recycling rate is another distinguishing attribute of the iron and steel industry [35–37]. According to World Steel Association [38],

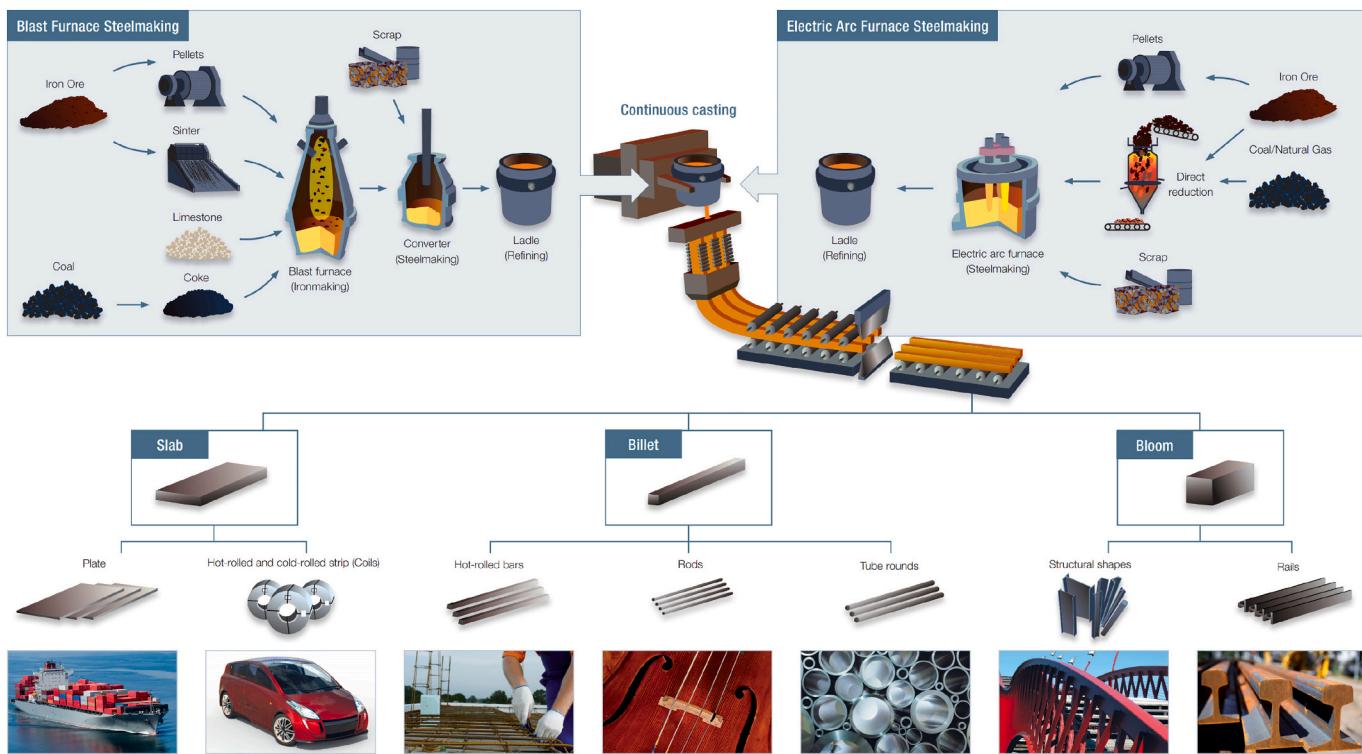



Fig. 3. Iron and steelmaking routes.

Source: [26].

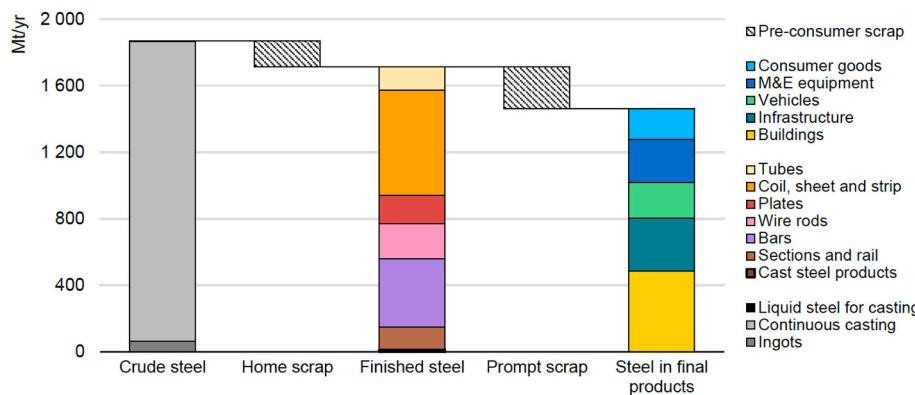
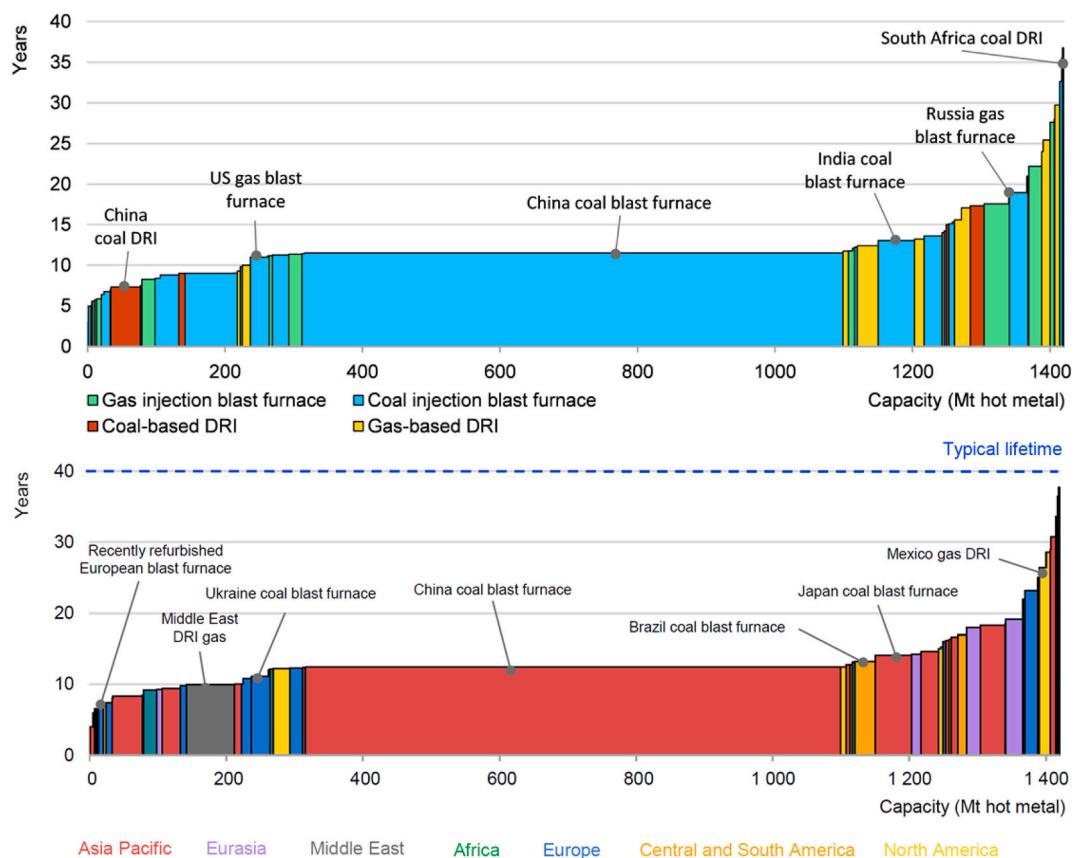



Fig. 4. Global steel production by product and demand segment in 2019.

Source: [6].

the recovery rates of steel are estimated at around 90% for automotive and machinery, 85% for construction, and 50% for electrical and domestic appliances, globally. In the U.S., for example, 33.1% of steel wastes (70.9% of steel cans) were recycled, which is third after paper and paperboard (68.2%) and other nonferrous metals (67.3%, including lead) in municipal wastes [39]. This high recycling rate can yield various benefits in terms of economy and environment, and we will visit this issue in Chapter 6.


Lastly, the industry needs very high temperatures, unlike those industries that use low-grade heat, such as machinery or electrical manufacturing. From Raw Material Preparation to Casting, Rolling, and Finishing, all processes require very high temperatures. For example, a low-temperature in sintering means “lower than 1,300 °C,” [40] and BOF and EAF are generally operated around 1500–1600 °C [41]. This attribute makes the iron and steel industry energy- and carbon-intensive, resulting in it being the most carbon-emitting among

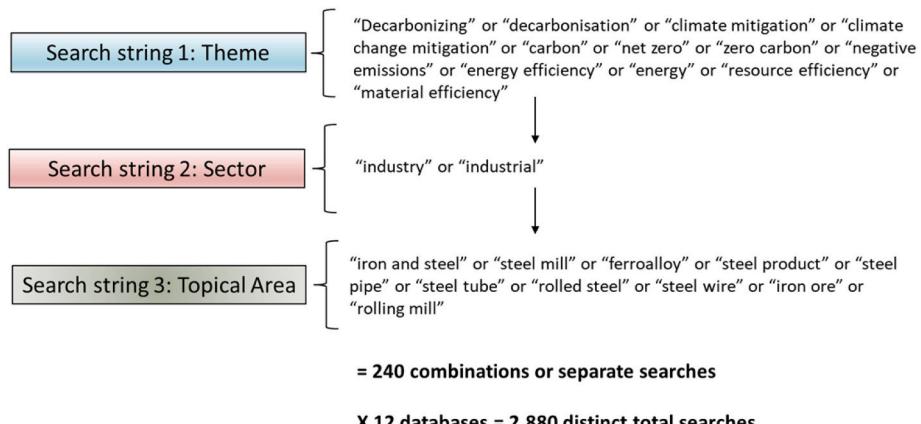
industries.

### 3. Research design and conceptual approach for a sociotechnical review

#### 3.1. Critical and systematic review approach

Similar to our previous review for the decarbonization of food and beverages [42] and F-gases [43], we characterize this review as critical and systematic. A critical review aims to demonstrate that a “research team has extensively scoured the literature and critically evaluated its quality.” [44]. We’ve made this review systematic, following the guidelines from [45,46]. A critical review includes evaluation of pieces of evidence quality and research gaps derived from the literature. It offers [42]:




**Fig. 5.** Geographic distribution and the average age of iron and steel making equipment by production routes (top panel) and regions (bottom panel).  
Source: [6].

- a chance to “take stock” and evaluate what is of value within a given field, or across varying bodies of evidence, in relation to a particular topic or research question;
- both a “launch pad” for conceptual novelty, as well as an empirical “testing” ground to judge the strength of evidence.

Unfortunately, a critical review is not necessarily systematic. That is why we try to make our review systematic as well as critical. A systematic approach can minimize any unintentional bias, such as self-citations or reviewing only for friendly groups, while promoting a review’s diversity. It also offers [43]:

- a focused exploration, which avoids excessively wide-ranging discussion and inconclusive results;
- the avoidance of the selective and opportunistic selection of evidence;
- replicability through the documenting of study inclusion;
- the ability to discriminate between sound and unsound studies, thus assessing methodological quality; and
- increased transparency, which reduces subjectivity and bias in the reporting of results.

For these reasons, the systematic review has also been widely applied in energy, environmental, and climate change fields [47,48]. As introduced in the following subsections, we developed a searching protocol,



**Fig. 6.** Summary of critical and systematic review search terms and parameters.  
Source: Authors.

**Table 3**

Summary of critical and systematic review search results and final documents.

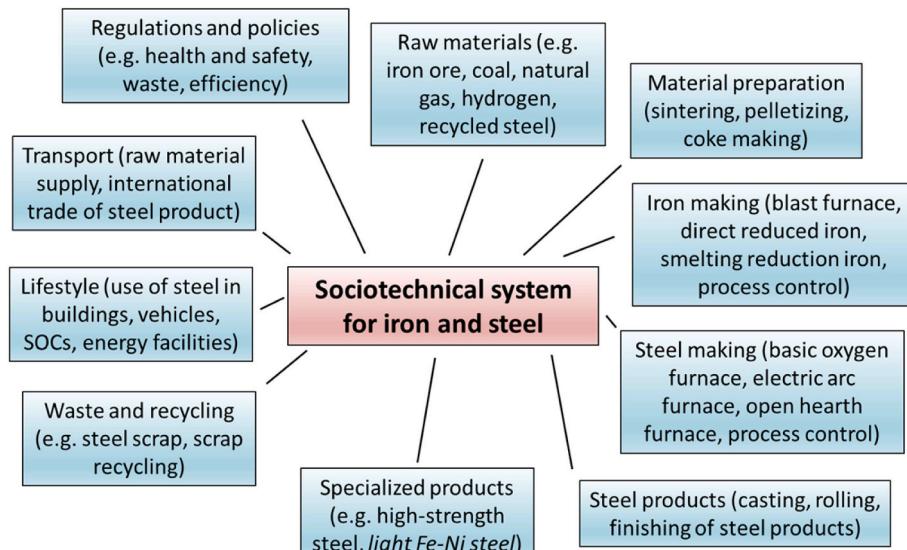
| Database                                  | Main topical area of database                                                                                                                                           | Initial search results | Deemed relevant after screening titles, keywords and abstracts | Deemed relevant after scanning full study | Number of duplications | Total |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------|-------------------------------------------|------------------------|-------|
| ScienceDirect                             | General science, energy studies, geography, business studies                                                                                                            | 139,812                | 344                                                            | 128                                       | –                      | 128   |
| JSTOR                                     | Social science                                                                                                                                                          | 21,204                 | 22                                                             | 12                                        | 0                      | 12    |
| Project Muse                              | Social science                                                                                                                                                          | 20,129                 | 7                                                              | 3                                         | 0                      | 3     |
| Hein Online                               | Law and legal studies                                                                                                                                                   | 28,766                 | 30                                                             | 9                                         | 0                      | 9     |
| PubMed                                    | Medicine and life sciences                                                                                                                                              | 1000                   | 29                                                             | 12                                        | 5                      | 7     |
| SpringerLink                              | General science, business and area studies                                                                                                                              | 106,534                | 62                                                             | 38                                        | 1                      | 37    |
| Taylor & Francis Online                   | General science                                                                                                                                                         | 27,726                 | 24                                                             | 14                                        | 0                      | 14    |
| Wiley Blackwell (Wiley Online Library)    | General science, area studies                                                                                                                                           | 33,448                 | 26                                                             | 15                                        | 0                      | 15    |
| Sage Journals                             | General science, area studies                                                                                                                                           | 5079                   | 8                                                              | 2                                         | 0                      | 2     |
| National Academies Publications (nap.edu) | General science                                                                                                                                                         | 383,167                | 6                                                              | 3                                         | 0                      | 3     |
| Targeted internet searches                | White papers, reports, grey literature (e.g., International Energy Agency, International Renewable Energy Agency, World Bank, UN agencies, and the online OECD library) | 48,588                 | 41                                                             | 28                                        | 0                      | 28    |
| Google scholar                            | General science                                                                                                                                                         | 837,257                | 148                                                            | 34                                        | 21                     | 13    |
| Total                                     |                                                                                                                                                                         | 1,652,708              | 745                                                            | 296                                       | 27                     | 271   |

Source: Authors.

analytical parameters, and an analytical frame of sociotechnical systems to keep our review systematic and critical.

### 3.2. Searching protocol and analytical parameters

As Fig. 6 summarizes, we utilized three explicit classes of search terms for the critical and systematic review. This resulted in 240 distinct search combinations for twelve separate databases or repositories produce 2880 search strings in total. This systematic search protocol can capture state-of-the-art research in terms of academic and policy.


Table 3 displays our results. Since the “iron and steel” with “industry” and “carbon” is a widespread word in academic or policy articles, the generic search result is counted in more than 1.6 million potentially relevant documents. However, after applying three screening protocols, which are identical to our previous review [42,43], that enormous number fell into a shortlist of 271 studies. The three screening protocols are Recency (published after 2000), Relevance (address the

specific topics of decarbonization), and Originality (results after eliminating duplicates). We cite many of these studies throughout the review.

### 3.3. Analytical frame of sociotechnical systems

The analytical frame of sociotechnical systems is applied for those 271 final studies to help guide and structure the review results [49,50].

Although a sociotechnical system for the iron and steel industry would be less complicated than the other sectors for consumer goods, such as food and beverages [42] and glass [citation, if possible], it includes not only iron and steelmaking processes, including material preparation, but also raw materials such as iron ore and coal, waste and recycling, and even the ways of steel use and regulations, including efficiency and safety (see Fig. 7). To be clear, Fig. 7 visualizes elements of the system in a non-hierarchical way. That is, we do not argue that each dimension of the system is on the same level, but they are all a part of the system in some way.

**Fig. 7.** Framing iron and steel as a sociotechnical system.

Source: Authors.

**Table 4**  
Final energy use in iron and steel making in 2015.

| Source                              | Energy use (EJ/year) | Share (%) |
|-------------------------------------|----------------------|-----------|
| Coking coal and coke                | 24.1                 | 70.0      |
| Other coal                          | 6.1                  | 17.6      |
| Blast furnace gas and coke oven gas | -3.3                 | -9.6      |
| Natural gas                         | 2.3                  | 6.7       |
| Oil                                 | 0.4                  | 1.2       |
| Biomass                             | 0.1                  | 0.4       |
| Electricity                         | 4.0                  | 11.8      |
| Heat                                | 0.6                  | 1.9       |
| Total                               | 34.4                 | 100.0     |

Source: [52,53]. Note: Negative energy use represents recovered energy in the iron and steel making processes.

Although not all studies in our sample fall under this rubric of a sociotechnical system, we utilize it throughout the study to organize results and return to it in the conclusion.

#### 4. The energy and climate impacts of iron and steel industry

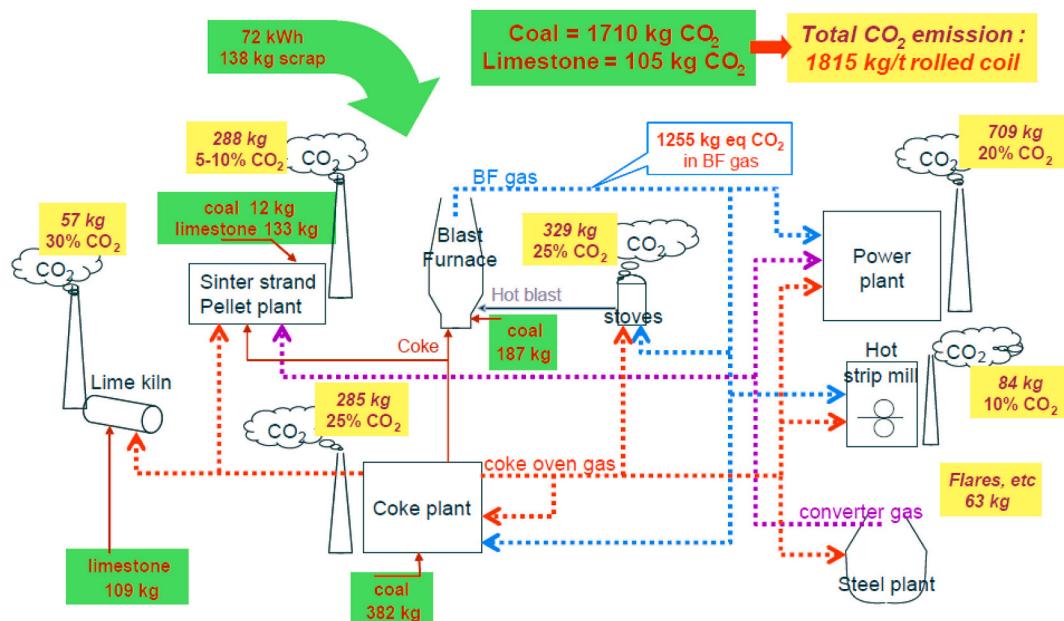
In 2020, the IEA projected global steel demand will increase by more than a third by 2050, particularly as emerging economies continue to grow, industrialize, and require more energy [6]. The COVID-19 pandemic gives a demand shock in the iron and steel industry, resulting in 5% decrease in global crude steel output in 2020 [6] (see Section 9.3 for more discussions). However, the steel industry is also projected to return to a robust growth path in IEA [6]’s baseline projections after overcoming the demand slump in the near term. Thus, without adequate measures and innovations to reduce GHG emissions from the industry, the emissions are projected to 2.7 Gt CO<sub>2</sub> per year by 2050, which is 7% higher than today [6].

##### 4.1. Energy and carbon intensive processes in the iron and steel sector

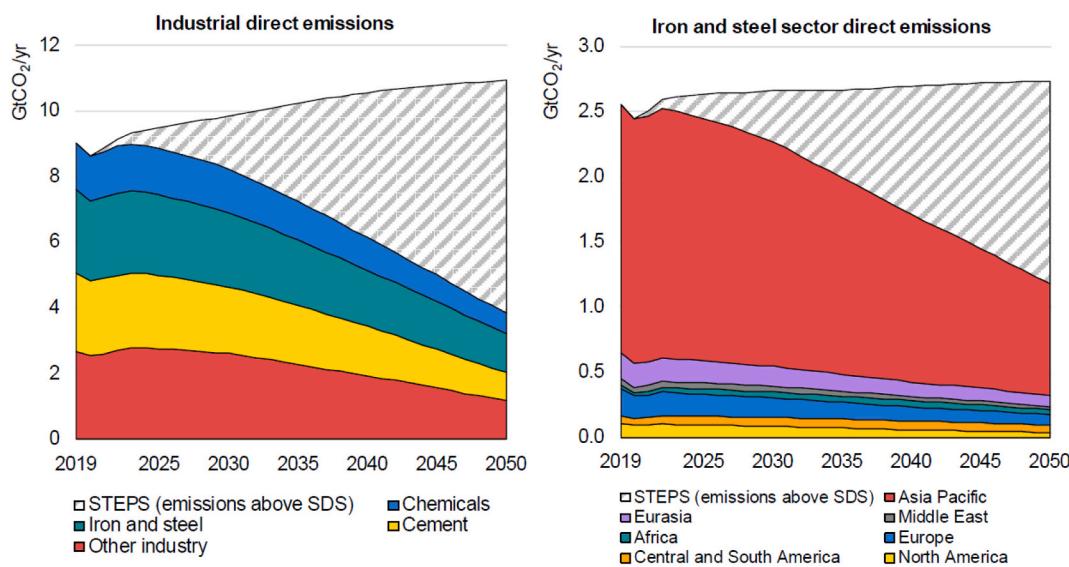
When investigating the industry’s climate impacts, describing the energy-intensive processes in the industry is the first and efficient way for a review. The iron and steel industry emits GHGs from raw materials and processes, combustion sources, and indirect emissions, such as electricity consumption in EAFs [51]. Table 4 shows the share of each

energy source in iron and steel making processes.

The primary sources of CO<sub>2</sub> emissions in the iron and steel making processes are raw materials, including cokes, and fuel combustion. Ovens, boilers, stoves, furnaces, and other miscellaneous equipment in the processes from the sintering to the final steel product manufacturing in Table 2 can be CO<sub>2</sub> emissions sources. Fig. 8 depicts the profile of CO<sub>2</sub> emissions in a typical BF/BOF integrated steel plant. Among 1.8 t CO<sub>2</sub> emissions per ton of rolled coil in a typical integrated steel plant, 1.7 t CO<sub>2</sub> is associated with coal use, and the remaining 0.1 t CO<sub>2</sub> is responsible for lime use [8].


Three reasons make the DRI carbon content critical when used in an electric arc furnace: 1) the presence of carbon is necessary to complete the metallization of the iron in the EAF, 2) carbon represents an additional source of energy in the EAF because burning the carbon by injecting oxygen reduces the electricity consumption, consequently enabling a faster melting of the charged materials, 3) carbon enables the formation of a foamy slag in the EAF [15].

##### 4.2. Estimating greenhouse gas emissions


The most of carbon footprints in the iron and steel industry are energy-related emissions. The IEA predicted the iron and steel industry would account for about 25–30% of direct industrial carbon emissions by 2050, even in the IEA Sustainable Development Scenario in which the GHG emissions of the iron and steel sector are reduced by 54% by 2050. As presented in the right side of Fig. 9, Asia Pacific is the key region because of this dramatic reduction of carbon emissions [6].

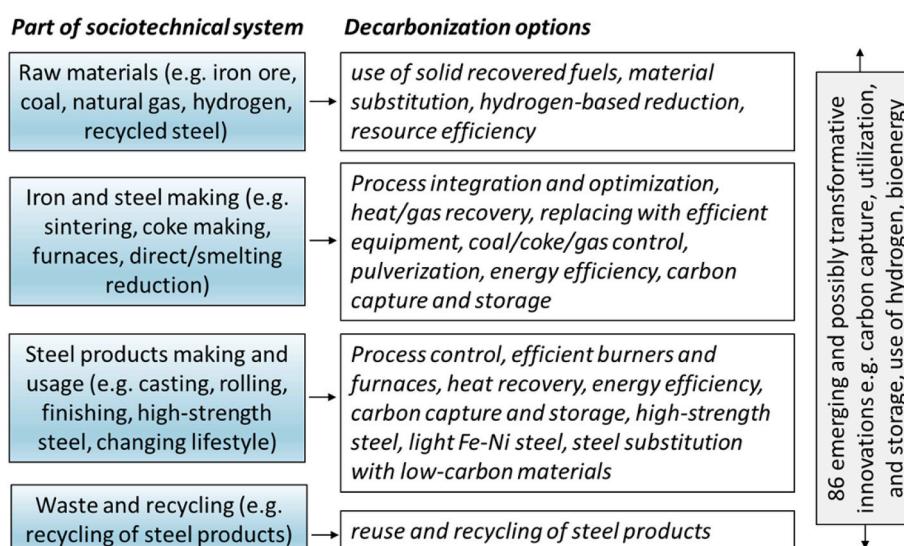
Our review finds many articles assessing country-specific GHG emissions in the iron and steel sectors. For example, one study revealed direct and indirect GHG emissions in the Chinese iron and steel industry using the Material Flow Analysis. The work showed that China emitted 77.2% of GHG emissions directly in 2011, and most of them were coal-fired emissions (Fig. 10).

Other studies examined the CO<sub>2</sub> emissions projections of the iron and steel sector for the UK perspective [56,57], Japan’s pathways towards 2030 [58], China with carbon audit evaluation [59], Thailand by 2050 [60], Europe considering future scenarios on energy efficiency [61], Taiwan [62], or even for global projections [63,64]. Recent estimation of GHG emissions from Chinese stainless steel production shows 1.44–



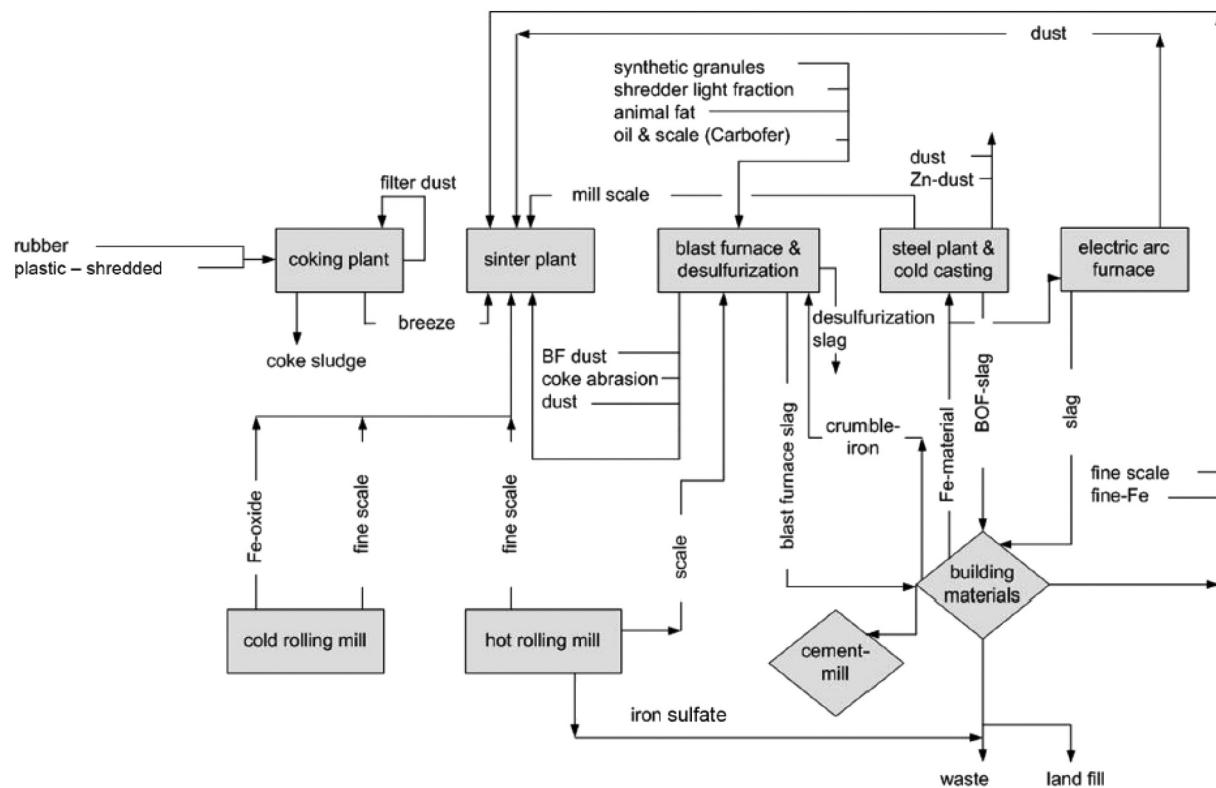

**Fig. 8.** CO<sub>2</sub> emissions from a typical steel mill.  
Source: [54].




**Fig. 9.** The contribution of the iron and steel sector to direct industrial CO<sub>2</sub> emissions by scenario.

Source: [6]. Note: STEPS is the IEA Stated Policies Scenario and SDS is the IEA Sustainable Development Scenario.




**Fig. 10.** The ratio of GHG emissions from iron and steelmaking systems of China in 2011.

Source: [55].



**Fig. 11.** Sociotechnical options for decarbonizing the iron and steel industry.

Source: Authors.



**Fig. 12.** Recycling of waste materials for a metallurgical plant.  
Source: [66].

1.76 kg CO<sub>2</sub> per kg stainless steel in terms of life cycle emissions [65]. As shown in these studies, the energy- and carbon-intensive nature of the iron and steel industry has aroused continuous interest to appraise decarbonizing technologies and resulting GHG emissions.

## 5. Current and emerging technologies and practices for decarbonization

Five distinct classes of technological practices and innovations for the decarbonization of the iron and steel industry are described in this section. Fig. 11 depicts an overview for the four classes—raw materials for the iron and steel making, iron and steel making processes, steel products making and usage, waste and recycling of iron and steel—and the fifth class, 86 emerging breakthrough and potentially transformative technologies, is described in Section 5.5.

### 5.1. Options for raw materials

The iron and steel sector uses carbon intensive raw materials for steel production. It is the largest consumer of coal, and DRI needs hydrogen, typically via natural gas, as a reducing agent. Thus, substantial amounts of carbon from the raw materials can be mitigated by using low-carbon hydrogen solid recovered fuels, or bioenergy sources, as the reducing agent.

Manufacturers can use *solid recovered fuels* (SRF) in steel production instead of reducing agents such as coke, coal, or natural gas. Using SRF may not be effective to reduce greenhouse gas emissions, but it could reduce landfill waste disposal, which is one of the major sources of methane emissions. Also, SRF has good properties for iron and steel making as it contains high carbon and hydrogen contents, which are necessary for strengthening steel. The steel plants in Austria, Germany, and Japan have used SRF as reducing agents [66], and Fig. 12 presents the flows of recycled wastes usage in a metallurgical plant.

Hydrogen could also be used directly as a reducing agent in the steel

making process and therefore has excellent potential for CO<sub>2</sub> reduction. Many steel producers are trying to develop this option. We can identify the following initiatives [52]:

- The hydrogen subproject of the ULCOS (Ultra-Low CO<sub>2</sub> steelmaking) program, run mostly from France (Université de Lorraine) [67,68]
- Hybrit project, SSAB, Sweden [69]
- SuSteel, VoestAlpine, Austria [70]
- Salcos-Macor, Salzgitter, Germany [52]
- ArcelorMittal Midrex plant, Germany [21]
- Flash iron making, the United States [71]

Decarbonization potential using hydrogen in the iron and steel industry is substantial. A simulation result indicates that the hydrogen-based direct reduction process can reduce up to 91% of direct CO<sub>2</sub> emissions relative to using natural gas [21]. Moreover, hydrogen-based technologies are a representative cross-cutting option for decarbonization [72] (see Section 9.2). It is, however, noticeable that the hydrogen production routes have a diverse nature, such as green, blue, and grey, and their carbon intensities are also widely ranged. Thus, the decarbonization of the iron and steel industry via hydrogen must be supported by the hydrogen produced from a low-carbon route (see Section 5.5 and Fig. 18).

Sintering is the second largest energy-consuming process in the iron and steel industry [73]. Thus, it is quite natural that there have been continuous efforts to decarbonize sintering, and energy saving by *process optimization* is one of those efforts. Process optimization by integrating a hybrid just-in-time learning soft sensor [73] and thermodynamic optimization [74] could be applied for saving energy during the sintering process.

### 5.2. Options for iron and steel making

The iron and steel making processes are the major carbon emissions

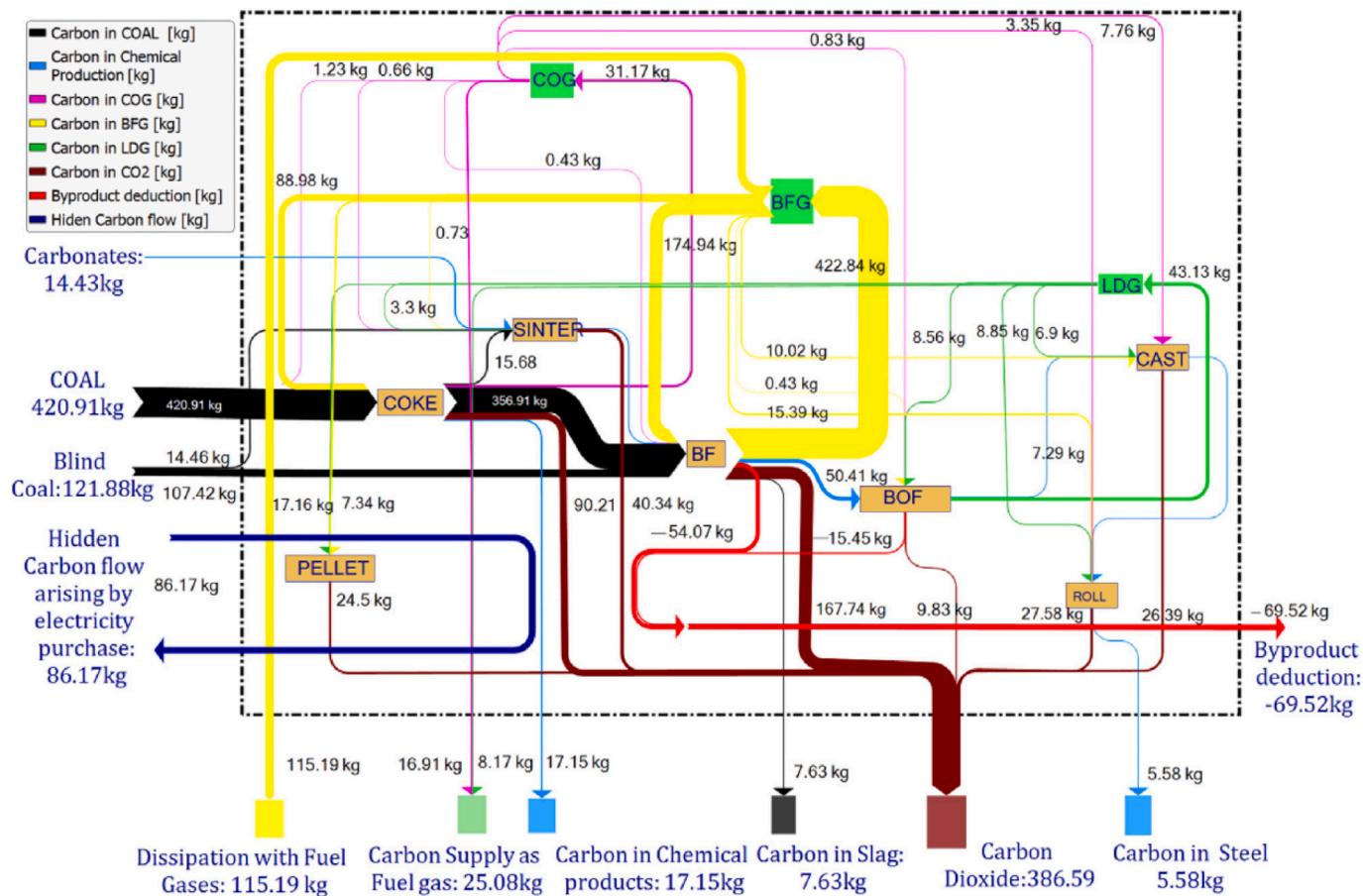
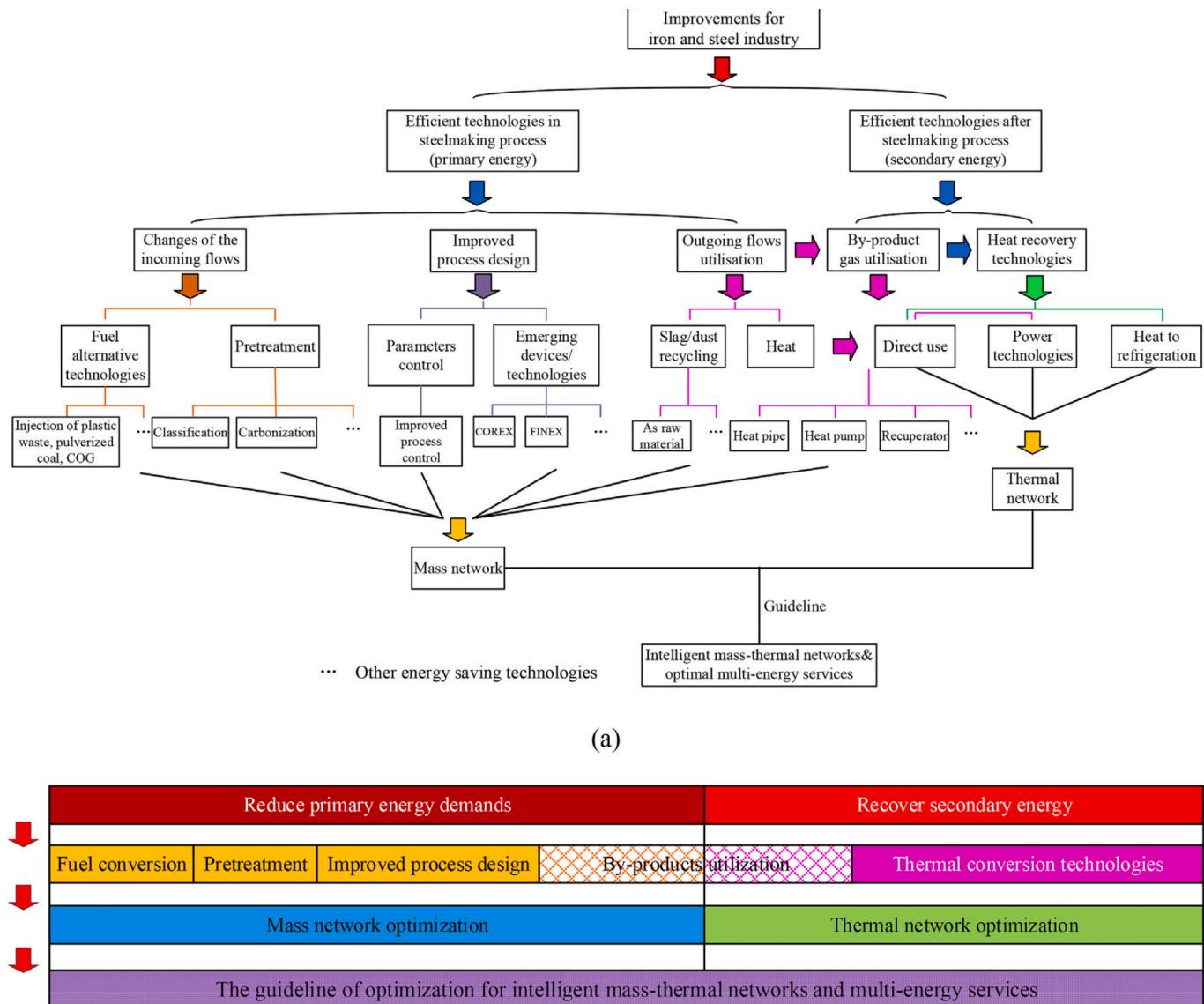



Fig. 13. A carbon flow chart for BF/BOF steel processing.

Source: [79].

source in the iron and steel industry. According to China's example of 2004, the iron making process is the most energy-consuming process among all steel industry processes, accounting for 70% of the total energy use of the iron and steel sector [75]. Because of the complexity and different steelmaking routes, there are many options for decarbonizing iron and steel making processes. They include energy efficiency, adoption of renewable sources or fuel switching, waste heat recovery technologies, process integration and optimization, carbon capture and storage, and hydrogen use.


Energy efficiency is vital for the sustainable future of the iron and steel industry. As mentioned in the Introduction, energy cost takes 20–40% of steel manufacturing costs [4], and, naturally, there is a strong incentive to save energy consumption in the process. Many countries have tried to improve the energy and resource efficiency of iron and steel production. The U.K. steel sector has recorded a steady improvement in resource efficiency but suffered a decline in the economic output per energy consumption [76]. One study reveals that the Swiss metals sector, which is responsible for about 14% of the industry's total final energy demand, has the maximum energy efficiency potential at 19% with the current best available techniques. The economic potential, however, decreases in the range of 11%–15%, and the corresponding CO<sub>2</sub> abatement potential is 6% [77]. Another study [78] suggested that the whole iron and steel-making process energy utilization efficiency was 47.6%, which means 52.3% of total purchased energy was lost in the process. A case study for China [79] gives us an excellent picture of the overall carbon flow in the iron and steel process (Fig. 13). According to this case study, producing one ton of crude steel emits 1418.78 kg of carbon dioxide. The study decomposed this direct CO<sub>2</sub> emission by process—422.75 kg from fuel gas dissipation, 28.00 kg in slag, 62.94 kg

in chemical products, for example. This decomposed carbon flow identified that enhancing power generation efficiency using the combined cycle could eliminate 134.43 kg CO<sub>2</sub> [79].

Other studies also presented energy efficiency options, impacts, and case studies, such as energy efficient technologies dissemination for the German steel industry [80], energy efficiency potential in India [81], and an EU27 case study considering different payback periods of efficiency investment [82].

The adoption of renewable sources or fuel switching from fossil fuels in the iron and steel making processes can reduce substantial greenhouse gas emissions. Adopting biomass in the processes is the first option for the iron and steel industry [83,84]. Biomass could replace fossil-based reducing agents and has the potential to decrease CO<sub>2</sub> emissions up to 50% in the integrated steelmaking process [14]. Biochar can be used in the sintering process, and charcoal is a promising substitute in blast furnaces [84]. Besides biomass, the other renewable sources can also mitigate carbon emissions since the industry uses electricity and heat for steel making [85–87].

Due to the energy intensive nature of steelmaking processes, the integration of lower-emission energy sources in high-producing geographic regions can also significantly lower global steel emissions. Coal currently accounts for 60% of China's electricity generation, which raises embodied steel emissions relative to regions that have integrated lower-emission electricity sources and renewables [85–87]. Similarly, almost one-fifth of all steel is expected to come from India by 2050 (compared to around 5% today), who's electricity grid is also heavily dependent on coal [88]. Renewable-based electricity and heat supply combining low-carbon hydrogen and CCUS could be a powerful option for decarbonization [86,89], especially as these nations continue to



**Fig. 14.** Roadmap of efficient use of energy in iron and steel industry (top panel (a): main concepts, bottom panel (b): general summarization).  
Source: [17].

account for larger percentages of steel production [90].

*Waste heat recovery technologies* also have great potential for the decarbonization of the iron and steel industry. Coke oven gas (COG) or coke gas is a byproduct of the coke-making process in the iron and steel industry. COG is a complicated mixture of CO, CO<sub>2</sub>, H<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>, and volatile coal produces COG in the coking process. COG also contains around 30 wt% tar [91]. COG, including tar, has very high energy content that could meet approximately 4.1% of the global demand for power generation [92]. Therefore, the hot COG utilization (recovery) can contribute considerable energy savings.

Various COG utilization approaches, such as power generation [93], H<sub>2</sub> production [94], and methanol [95] or CH<sub>4</sub> production [96], have been developed. The integrated COG-based DRI plant is another promising and efficient option. In this process, the hot DRI reacts with sulfur (in-situ desulfurization) before the fuel is injected into the reformer. Purified COG can also be converted into a reformed gas that can produce DRI [91].

Molten slag is another promising source for waste heat recovery. It is exhausted with a very high temperature around 1450–1550 °C [97]. For the heat recovery from molten slag, traditional technologies, such as water quenching, is not appropriate because it consumes a considerable

amount of water. POSCO, the steel company in the Republic of Korea, developed an energy-efficient technology to recover slag heat in 2012. It recorded a 50% recovery rate at a temperature of 460 °C in a field test of a prototype [98].

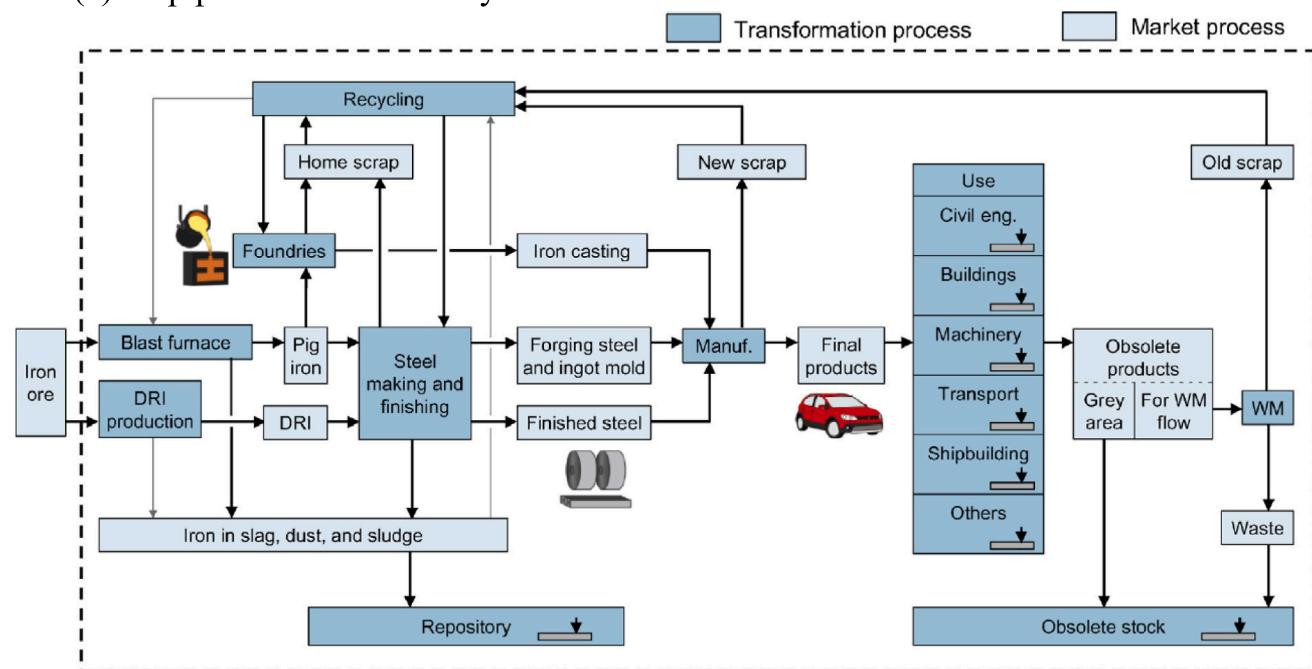
*Process integration and optimization* is another good option to decarbonize the iron and steel industry. Various optimization techniques have been applied for the iron and steel sector, such as an integrated steel plant system [99], energy intensity optimization [100], and material-energy nexus flow combination [101]. One study [17] illustrated the concept of mass-thermal network optimization and summarized their classifications, which gives us valuable insights into the decarbonization options (Fig. 14). As shown in this figure, process optimization can reduce energy demand as well as recover energy use. Thus, the optimal integration of various process optimization techniques has excellent potential as a promising decarbonization option for the iron and steel industry, and that's why a practical roadmap is necessary.

*Carbon capture and storage (CCS) or Carbon capture, utilization, and storage (CCUS) technology* is one of the key options to mitigate carbon emissions and hence could be helpful for the iron and steel industry [91]. For example, there are vigorous efforts to develop effective sorbents for CCS from materials and by-products of the iron and steel

Table 5

Life cycle GHG emissions for lightweighting scenario. (unit: kg CO<sub>2</sub>-eq.).

| Options             | Production |      |      | Use    |        | End of life | Total  |        |
|---------------------|------------|------|------|--------|--------|-------------|--------|--------|
|                     | Low        | Mid  | High | Low    | High   |             | Low    | High   |
| Baseline vehicle    | 1670       | 3590 | 4100 | 38,248 | 57,753 | 147         | 40,065 | 62,000 |
| 6% lightweight HSS  | 1620       | 3630 | 4200 | 35,547 | 54,178 | 138         | 37,305 | 58,516 |
| 19% lightweight HSS | 1563       | 3700 | 4820 | 29,500 | 44,544 | 100         | 31,171 | 49,472 |


Source: [113]. Note: HSS represents high-strength steel.

making process, such as a mixture of magnetite ( $Fe_3O_4$ ) and iron (Fe) [102] and direct gas-solid carbonation of steel slag [103]. Also, CCUS includes “off-gas hydrogen enrichment and/or CO<sub>2</sub> removal for use or storage,” “converting off-gases to fuels,” “converting off-gases to chemicals” for blast furnaces (BF), and “natural gas-based with CO<sub>2</sub> capture” for direct reduced iron (DRI). Because of its versatile nature,

CCS can be applied for most processes in the sector: sintering, pelletizing, coking, iron and steel making, and casting and rolling [104].

An increase in CO<sub>2</sub> costs in the market, i.e., the EU Emission Trading Scheme, can make CO<sub>2</sub> capture options economically feasible in the iron and steel industry. Note that iron and steel manufacturing is an extensive production process with high CO<sub>2</sub> concentrations and recoverable heat

(a) Top panel: circular lifecycle of steel



(b) Bottom panel: primary vs. secondary steel ratio

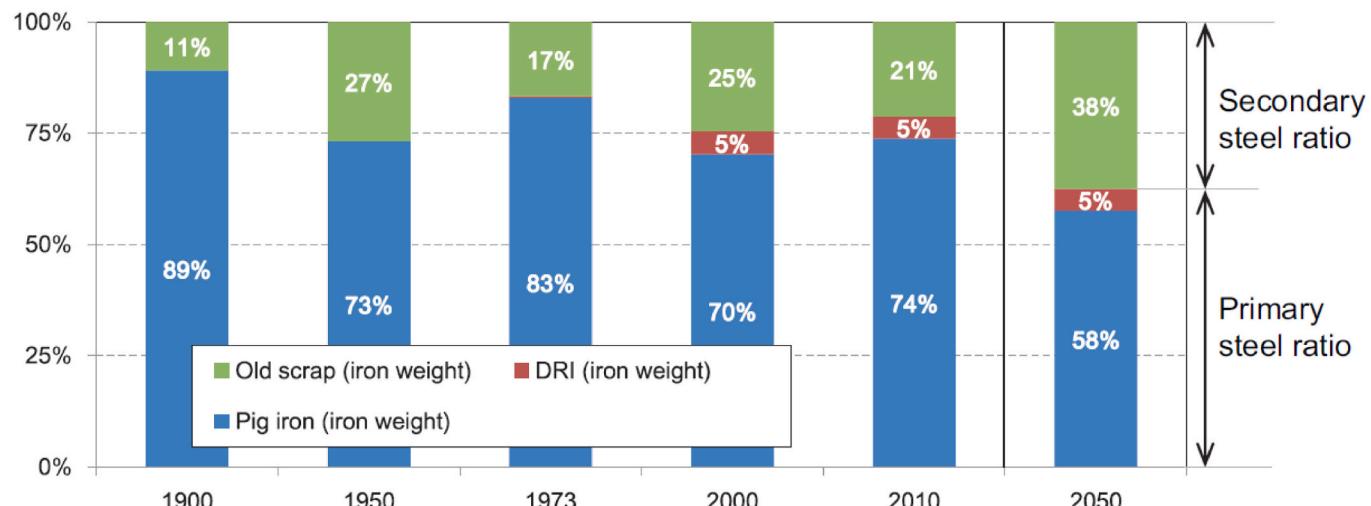



Fig. 15. Steel scrap recycling and the expansion of secondary steel.

Source: [116].

**Table 6**

86 commercially available, emerging, and experimental innovations for the iron and steel industry.

| Level of sociotechnical system  | Commercially available but not yet widely utilized (as of 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Emerging soon with working prototypes (as of 2020)                                                                                                                                                                                                                                                                                                                             | Experimental and likely only after 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Raw materials                   | 1. Solid recovered fuels for use as reducing agents<br>2. Heat recovery from sinter cooler<br>3. Single-chamber-system coking reactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. Primary Energy Melter                                                                                                                                                                                                                                                                                                                                                       | 1. Low-carbon hydrogen-based direct reduction<br>2. Charcoal in the sintering process<br>3. Torrefied biomass<br>4. Plasma blast furnace<br>5. Off-gas hydrogen enrichment (BF)<br>6. CO <sub>2</sub> removal for use or storage (BF)<br>7. Electrolytic H <sub>2</sub> blending (BF)<br>8. Natural gas-based DRI with high levels of low or zero-carbon electrolytic H <sub>2</sub> blending<br>9. Natural gas-based DRI with CO <sub>2</sub> capture<br>10. DRI based solely on low or zero-carbon electrolytic H <sub>2</sub><br>11. Paired straight hearth furnace<br>12. Molten oxide electrolysis<br>13. Suspension hydrogen reduction of iron oxide concentrate<br>14. Ironmaking using biomass and waste oxides<br>15. New scrap-based steelmaking process<br>16. In-situ real-time measurement of melt constituents<br>17. Continuous steelmaking for EAF<br>18. Smelting reduction with CCUS<br>19. low or zero-carbon H <sub>2</sub> for high-temperature heat (ancillary processes)<br>20. Next-generation system for scale-free steel reheating<br>21. Thermochemical recuperation for steel reheating furnaces<br>22. Oxygen-rich furnace System<br>23. Integrating steel production with mineral sequestration |
| Iron and steel making           | 4. Use of recuperative burners<br>5. Replacing existing equipment with more efficient ovens, burners, kilns, and furnaces<br>6. Process modification of kilns<br>7. Optimization of furnace<br>8. Waste heat recovery<br>9. Use of ceramic ladles instead of cast iron pipes<br>10. Efficient ladle preheating<br>11. Radiation recuperators for ladle furnace<br>12. Coal moisture control<br>13. Coke dry quenching<br>14. Injection of pulverized coal<br>15. Top-pressure recovery turbines<br>16. Recovery of BF/BOF gas<br>17. Charging carbon composite agglomerates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. Advanced control of heating walls in coke ovens<br>3. Hot oxygen injection<br>4. Tecnored<br>5. Cyclone converter furnace<br>6. Continuous horizontal sidewall scrap charging<br>7. Converting off-gases to fuels (BF)<br>8. Converting off-gases to chemicals (BF)                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Steel products making and usage | 18. Near net shape casting (thin slab)<br>19. Bottom stirring/stirring gas injection<br>20. Use of foamy slag practices<br>21. Use of oxy fuel burners<br>22. DC arc furnace<br>23. Scrap preheating and continuous charging<br>24. Flue gas monitoring and control<br>25. Eccentric bottom tapping<br>26. Improved process control<br>27. Ultra-high-power transformer<br>28. Twin shell furnace<br>29. Hot charging<br>30. Recuperative or regenerative burner<br>31. Use of ceramic low thermal mass insulators for reheating furnace<br>32. Controlling oxygen level and variable speed drive on combustion air fans<br>33. Efficient drives in rolling mill and machining<br>34. Waste heat recovery (cooling water, annealing, and compressor)<br>35. Reduced steam use for pickling<br>36. Automated monitoring and targeting systems<br>37. Thermal insulation for plating bath<br>38. Automated bath cover<br>39. Compressed air network modification<br>40. Reducing air extraction across heating solution<br>41. Efficient compressors<br>42. Optimizing the process solution temperature<br>43. Use of high-strength steel | 9. Energy monitoring and management system in casting<br>10. Preventative maintenance in steel mills or EAF plants<br>11. Variable speed drives for flue gas control, pumps, fans in integrated steel mills<br>12. Cogeneration for the use of untapped coke oven gas, blast furnace gas, and basic oxygen furnace-gas in integrated steel mills<br>13. Additive manufacturing |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Waste and recycling             | 44. Rotary hearth furnace dust recycling system<br>45. Injection of plastic waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14. Recycling basic oxygen furnace slag<br>15. Recycling of stainless steel dust<br>16. Regeneration of hydrochloric acid pickling liquor<br>17. Recycling of waste oxides in steelmaking furnace                                                                                                                                                                              | 24. Geological sequestration of carbon dioxide using slags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Note: The detailed description of each innovation is presented in Table A1: in the Appendix.

Source: Authors compilation and modification from [8,18,21,66,77,113,124–139].

[105,106]. Higher carbon price thus makes the CCS applications in the iron and steel industry economically feasible.

Despite the challenges to meet economic feasibility, it is evident that CCS will be (and must be) an effective and cross-cutting option for the decarbonization of the iron and steel sector. As many steelmaking

practices have already reached close to their maximum thermodynamic limits [9,16] and emerging decarbonization options are primarily focusing on incrementally lowering emission, carbon capture is one of the few technologies to offer scalable reductions that rival steel's economic importance and need for decarbonization. Several studies discuss

its technical concept [106,107], application design [108,109], and potential [110,111] as a promising decarbonization option.

### 5.3. Options for steel products and usage

Steel products making, from crude steel to the finished products such as coil, sheets, strips, wire, bars, or pipes, also require substantial energy inputs. Similar approaches—process control and optimization, efficient burners and furnaces, heat recovery technologies, and carbon capture and storage—could also be applied for decarbonization. However, the practical application of those approaches differs from that in iron and steel making since they are “distinct” processes (see Table 6, for example).

The World Steel Association launched a global initiative to exchange knowledge from regional activities, entitled “CO<sub>2</sub> Breakthrough Programs,” in 2003 [112]. The research and investment covered in these programs are taking place in [91]:

- The EU (ultra-low CO<sub>2</sub> steelmaking, or ULCOS I and ULCOS II)
- The US (American Iron and Steel Institute)
- Canada (Canadian Steel Producers Association)
- South America (ArcelorMittal Brazil)
- Japan (Japanese Iron and Steel Federation)
- South Korea (POSCO)
- China (Baosteel) and Taiwan (China Steel) and
- Australia (BlueScope Steel/One Steel CSIRO coordination)

Considering the local constraints and cultures, the decarbonizing innovations, economic feasibility, technical feasibility at various scales—from lab scales to commercial implementations—were discussed in the CO<sub>2</sub> Breakthrough Programs [112].

One good option to mitigate CO<sub>2</sub> emissions is the *weight lightening of vehicles* with high-strength steel products. Lightweight vehicles will consume less energy than heavier cars per vehicle-mile traveled. Table 5 reveals that the life cycle GHG emissions of vehicles made with 19% high-strength steel (HSS) are 20.2–22.2% lower than a for a baseline vehicle [113].

Similarly, according to the World Steel Association, advanced and ultra-high-strength steel can reduce steel applications' weight by up to 40%. It also reduces the number of raw materials and energy used to produce steel products. HISTAR® by ArcelorMittal, for example, weighs 32% less than a standard grade steel beam of the same length and thickness, saving around 30% on material [114].

### 5.4. Options for waste and recycling

Reducing wastes in the steel making processes and recycling steel products can substantially reduce energy use in the iron and steel sector [115]. The World Steel Association reveals that the steel industry has globally recycled over 22 billion tons of steel since 1900, resulting in the iron ore (28 billion tons) and coal (14 billion tons) consumption reduction globally [114]. Another study showed that global secondary steel using steel scrap may expand to 38% of total steel production by 2050 (Fig. 15) [116]. Since steel production from scrap uses much lower energy than the primary steel from iron ore [117,118], the expansion of secondary steel can be an impactful decarbonization option.

Iron recovery from metallurgical slags is also noteworthy and E-wastes, such as refrigerators, computers, and TV, also provide secondary ferrous resources for recycling [119]. Commination (for size reduction and surface area increase) and separation [120], carbothermic smelting reduction [121], carbothermic reduction, flotation, or leaching [122], and aluminothermic smelting reduction [123] technologies have been applied for the iron recovery from slags.

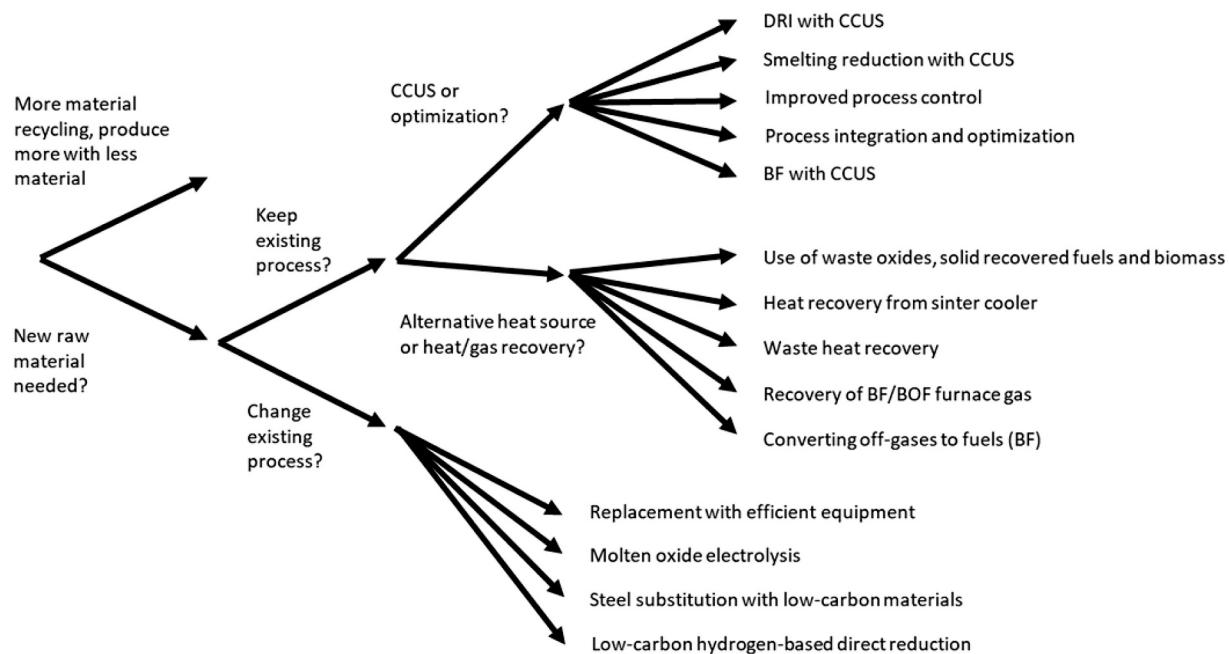
Recycling steel for use as a raw input, or for the creation of recycled steel through EAF production routes can also lower the emissions intensity of steel by 62–90%. The amount of emissions reduced is

primarily based on the electricity grid of the country that is responsible for recycling the steel [90], the steel process route, and is heavily dependent on the availability of scrap steel. Because of this dependency, and steel's use in products with long lifetimes, the use of recycled steel has not been able to match growing steel demand, although many of the IEA's ambitious climate scenarios show large increases in the creation of scrap-base steel [6] and a decline in blast-furnace primary steel production.

### 5.5. Emerging breakthroughs and transformative innovations

The last category of decarbonizing options for the iron and steel industry is *breakthrough and emerging innovations*. Our systematic review revealed possibly transformative options for the near future, as summarized in Table 6. Likewise the former review on the decarbonization options for the other industries [42,43], we classified the 86 innovations for the iron and steel industry across the sociotechnical system into three groups—commercially available but not yet widely diffused (as of 2020); emerging soon with working prototypes; and those at the experimental and likely only after 2025. Interestingly, more innovations are commercially available (45) than are both emerging (17) or in experimental stages (24).

The decarbonization innovations, including the emerging ones above, could also be categorized using a decision tree (Fig. 16) or by the popularity in the reviewed literature (Fig. 17). If we consider decarbonization of the iron and steel industry using just existing materials and fuels, then recycling more and enhancing resource/material efficiency would be the sole options [140]. Considering new materials and fuels as well, however, expands the decarbonization options and existing processes can be kept or changed with more efficient equipment or entirely new techniques, such as hydrogen-based direct reduction.


Fig. 17 depicts the frequency of decarbonization options among the reviewed literature in this study. The frequency and level of academic interest could be an indicator of promising innovations, although it does not necessarily represent the true potential of each technology. We organized the frequency by the iron and steel industry's value chain and assigned colors for the type of each innovation.

One early stage but promising and powerful decarbonization option is low-carbon *Hydrogen*. Hydrogen from renewable or other low-carbon sources could be used as a reducing agent in the steel making process and has the potential to mitigate more than 3 Gton of CO<sub>2</sub> annually at a cost of less than USD\$ 60/ton CO<sub>2</sub> mitigated [141]. HYBRIT, one of the companies developing hydrogen-based DRI has further shown that each ton of hydrogen used in a DRI process that replaces a blast furnace saves 24–32 kg of CO<sub>2</sub> [142].

A simulation result indicates that the hydrogen-based direct reduction process can reduce up to 91% of direct CO<sub>2</sub> emissions than the reduction using natural gas [21]. Incorporating a biomass-based poly-generation system in the iron and steel making process could also be a good option for the iron and steel industry's sustainable future. One study suggested a 34.15% reduction of carbon emissions and a 1.81% enhancement of the annualized capital cost in the best scenario [137]. Considering its impact, potential [72,143], and developers, such as SSAB [144], POSCO [19,145], ArcelorMittal [146], Voestalpine [147], Salzgitter Flachstahl [52], hydrogen-based DRI would become the long-term winner for low/zero carbon steel.

The ULCOS (Ultra-Low Carbon Dioxide Steelmaking) project also presents hydrogen as a breakthrough technology for the iron and steel sector [67]. It suggests replacing coal with hydrogen and electricity in hydrogen reduction. A pure hydrogen-based steel making process is also possible. Many studies have developed practical models with pure H<sub>2</sub> as a reducing agent in the direct reduction process [11,148–150]. Hydrogen could also be combined with CCS technologies [151] and CCU technologies [152] to reduce carbon emissions in steel making processes (Fig. 18).

The cost reduction of renewable electricity could be a game-changer



**Fig. 16.** Decision tree of decarbonization choices for the iron and steel industry.

Source: Authors modification based on the framework in [130].

|                           | Raw material preparation                         | Ironmaking          | Steelmaking              | Casting, rolling, finishing      |
|---------------------------|--------------------------------------------------|---------------------|--------------------------|----------------------------------|
| Frequently mentioned<br>↑ | Heat Recovery from Sinter Cooler                 | Direct-reduced Iron | Electric Arc Furnace     | Heat Control                     |
|                           | Improved Process Control                         | Coke Control        | Heat Recovery of BOF Gas | Improved Process Control         |
|                           | Solid recovered fuels for use as reducing agents | BF Gas Recovery     | Open Hearth Furnace      | Monitoring and Management System |
|                           | Charcoal in the Sintering Process                | Heat Control        | Ladle Control            | Recuperative Burner              |
|                           | Single-chamber-system Coking Reactor             | Recuperative Burner | Improved Process Control | Oxy-fuel Burner                  |
| Barely mentioned<br>↓     |                                                  |                     |                          |                                  |

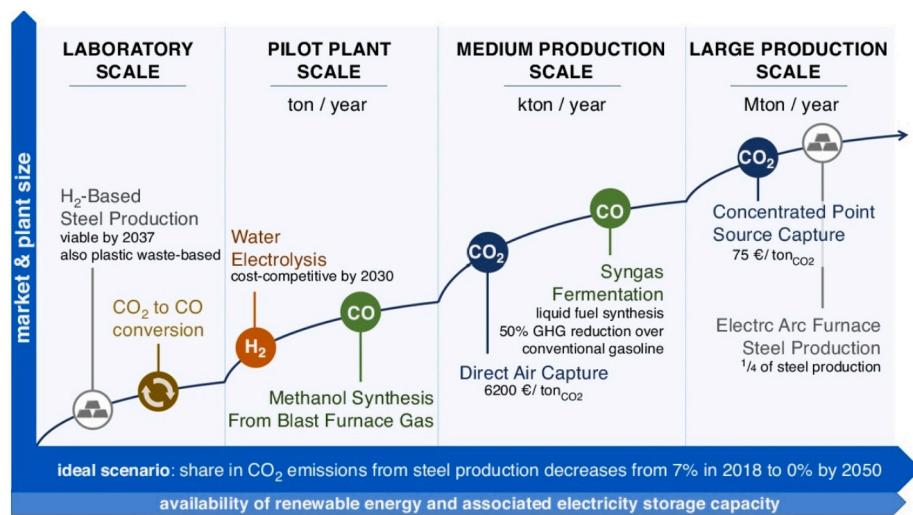
**Fig. 17.** Promising decarbonization innovations by value chain.

Note: Crosscutting options, such as hydrogen and CCUS, are incorporated in processes or equipment. For example, hydrogen and CCUS can be applied in both direct-reduced Iron and Electric Arc Furnace. Orange color denotes the options related to heat, blue indicates the one for process/equipment, and green is for material/fuels.

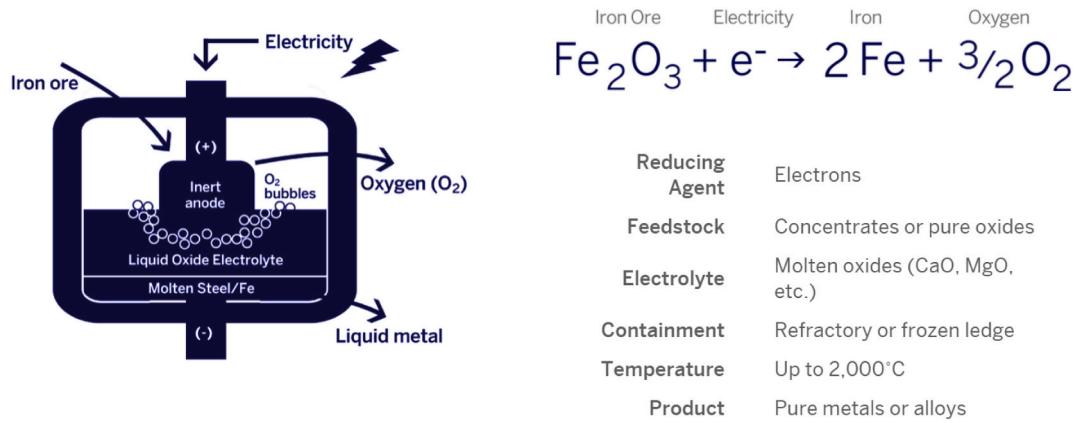
Source: Authors.

for low-carbon hydrogen production. One study suggested that Australia could supply hydrogen for East Asia, especially Japan and Korea, at USD 3.23 per kg by 2025. This study also revealed that the 2025 export potential of 25–345 PJ could grow to 621–3180 PJ in 2040, with the production cost range of USD 1.70–4.95 per kg H<sub>2</sub> [52]. Electrolysis efficiency is currently at around 77%, and approximately 85% is the thermodynamic limit [153]. Electricity cost is thus the driver of renewable hydrogen production cost.

Molten oxide electrolysis (MOE) is another potentially game changing technology as it completely changes the steel manufacturing process [19]. Unlike traditional steel production, MOE produces no carbon emissions and can be zero-carbon if powered by zero-carbon electricity sources (Fig. 19).


## 6. The benefits of decarbonizing iron and steel industry

Decarbonizing the iron and steel industry gives clear benefits that we categorize into three areas: energy and carbon savings, cost savings, and other environmental co-benefits.


### 6.1. Energy and carbon savings

Although steelmaking processes operate close to their thermodynamic limits using current technologies [9], our review reveals compelling decarbonization innovations (see Table 6). Those innovations can yield financial benefits from energy and carbon savings across multiple levels of the sociotechnical system.

Regarding emissions reductions, one study reveals that energy saving technologies, such as coal moisture control and high temperature air



**Fig. 18.** Green hydrogen production and its applications in steel production.  
Source: [152].



**Fig. 19.** Molten oxide electrolysis.  
Source: [154].

combustion, can reduce almost half of the CO<sub>2</sub> emissions from the Chinese steel sector, reducing the emissions from 1469 Mt in 2015 to 710 Mt by 2050 [155]. Another case study assessed that the cost-effective energy saving potential of the German iron and steel industry is up to 11.7% for fuel, 2.2% for electricity, and 12.2% for CO<sub>2</sub> emissions when applying a plant-specific bottom-up approach [156].

Despite the fact that decarbonization of the iron and steel industry would be a challenging journey, a sustainable future in terms of the environment and economic output could be achieved through effective technologies and policies. According to Hasanbeigi [7], the maximum decarbonization potential would be about 15% between 2010 and 2050, considering the CO<sub>2</sub> intensity decrease of power sectors and the increase in scrap availability. Fig. 20 gives valuable insight into investigating where the energy savings by decarbonization technologies originated. This case study indicates that traditional production processes, such as hot rolling, blast furnaces, and coke ovens (top three in Fig. 20), have great potentials for energy saving in China when applying fuel changes and low-carbon devices [157]. Well-known decarbonization options, such as regenerative burners and pulverized coal, identified in Section 5.5, are also effective for China's iron and steel industry. Quantifying the contribution to energy savings of each innovation via scenario analysis could support development of a decarbonization policy.

## 6.2. Cost and financial savings

Because of the iron and steel industry's energy-intensive (uses high-temperature) nature, reduced energy inputs will result in significant financial savings as well as social cost savings through reduction of the negative externalities imposed by coal and natural gas consumption [158]. One study, for example, estimated that efficient technologies for integrated casting and rolling would reduce operations and maintenance costs by 20–25% [136]. Another study presented 14 efficiency measures in the industry that could save \$0.11–\$6.27 per tonne of steel [159] (Table 7). Thus, taking the total global steel production, 1477.7 million tonnes in 2018 (Table 1), into account, 14 efficiency measures could save a total of \$26.76 billion per year.

## 6.3. Other environmental co-benefits

Many of the decarbonizing options reviewed in this paper can also save water usage, minimize wastes, and make other positive benefits, such as air quality improvements [162–164]. One study noted that the optimization of water usage and recovery could yield considerable water and energy savings in the iron and steel making processes. For example, case studies on the optimizing the water network of steel plants in China and Italy resulted in reduced freshwater intake in the plants by 20%

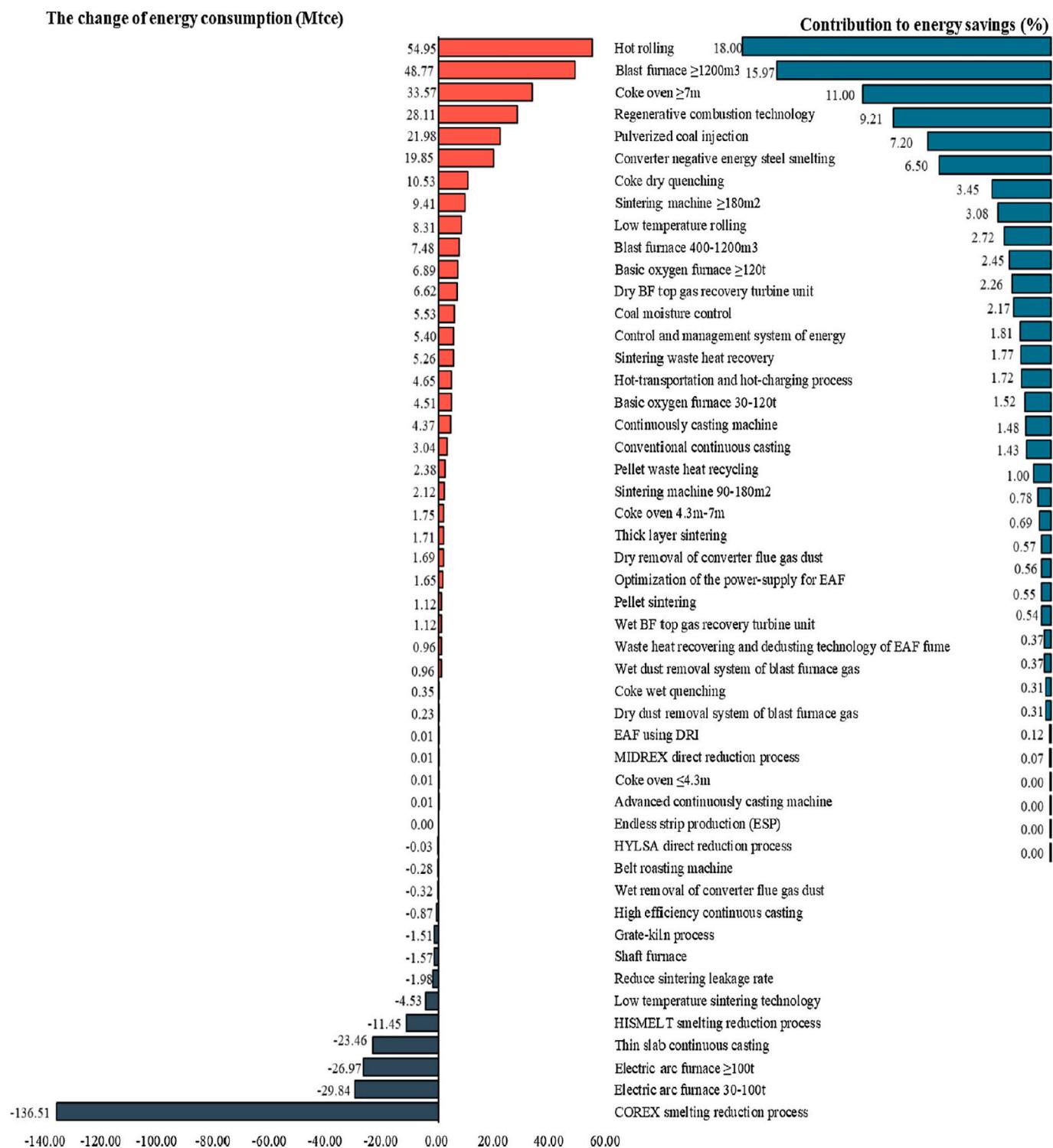



Fig. 20. Energy savings contributed by each technology in China's iron and steel industry.

Source: [157]. Note: Positive values denote energy savings, and negative values represent energy increments.

[165]. Another study also reveals that decarbonization of China's iron and steel industry can significantly improve the ecological environment of the Beijing-Tianjin-Hebei region, Yangtze River Delta region, Henan, and other places that have frequently suffered from pollution haze [166].

As discussed already, the recycling ratio of steel is very high, close to 95%, making steel the most recycled material [165]. While the high

recycling ratio is mainly for economic reasons, it gives us other environmental benefits that include less energy use and fewer carbon emissions. The scrap-based EAF is greener than the other steel making processes starting from raw materials. The 4-Rs "circular economy" concept by the World Steel Association successfully depicts the co-environmental benefits of reuse and recycling (Fig. 21).

Applying decarbonization options for the iron and steel industry can

**Table 7**

Fourteen efficiency measures in the iron and steel industry and productivity benefits.

| Efficiency measure                     | Productivity benefit                                                      | Cost saving (US\$/tonne) |
|----------------------------------------|---------------------------------------------------------------------------|--------------------------|
| Electric steelmaking                   |                                                                           |                          |
| Oxy-fuel burners                       | Reduces tap-to-tap times                                                  | 1.00                     |
| Scrap preheater—FUCHS shaft furnace    | Reduces electrode consumption, improves yield, saves waste handling costs | 0.80                     |
| Bottom stirring—stirring gas injection | Improves yield, cuts need for inert gas purchases                         | 0.22                     |
| Improved process control               | Reduces electrode consumption, improves yield, saves maintenance costs    | 0.90                     |
| DC-arc furnace                         | Reduces electrode consumption, reduces tap-to-tap time                    | 0.13                     |
| Scrap preheater—CONSTEEL               | Reduces electrode consumption, improves yield                             | 0.38                     |
| Scrap preheater—twin shell             | Reduces tap-to-tap time                                                   | 0.11                     |
| Foamy slag                             | Reduces tap-to-tap time                                                   | 0.63                     |
| Integrated steelmaking                 |                                                                           |                          |
| Injection of natural gas—140 kg/thm    | Decreases coke use; O&M and material cost savings at the coke battery     | 0.36                     |
| Pulverized coal injection—130 kg/thm   | Decreases coke use; O&M and material cost savings at the coke battery     | 1.43                     |
| Pulverized coal injection—225 kg/thm   | Decreases coke use; O&M and material cost savings at the coke battery     | 0.27                     |
| Adopt continuous casting               | Saves equipment/handling costs, reduces material losses                   | 5.36                     |
| Hot charging                           | Reduces material losses, improves productivity                            | 0.25                     |
| Both electric and integrated           |                                                                           |                          |
| Thin slab casting                      | Improves productivity, reduces material losses                            | 6.27                     |

Source: [160]. Note: kg = kilogram. THM = tons of heavy metal. “Tap-to-tap” time is the time from the beginning of charging to the end of tapping (emptying) the furnaces [161].

also reduce air pollutants, such as particulate matter. One study interestingly formulated the relationship between CO<sub>2</sub> reductions, PM2.5 reductions, and related costs through a triangular diagram [167] (Fig. 22). It is noteworthy that the balance between cost, carbon emissions reduction and particulate emissions reductions varies by technology combinations with the BF-BOF being inexpensive but very environmentally unfriendly and the combination of EAF-CCS-fabric filter and desulfurization being expensive but very environmentally friendly (color is the figure).

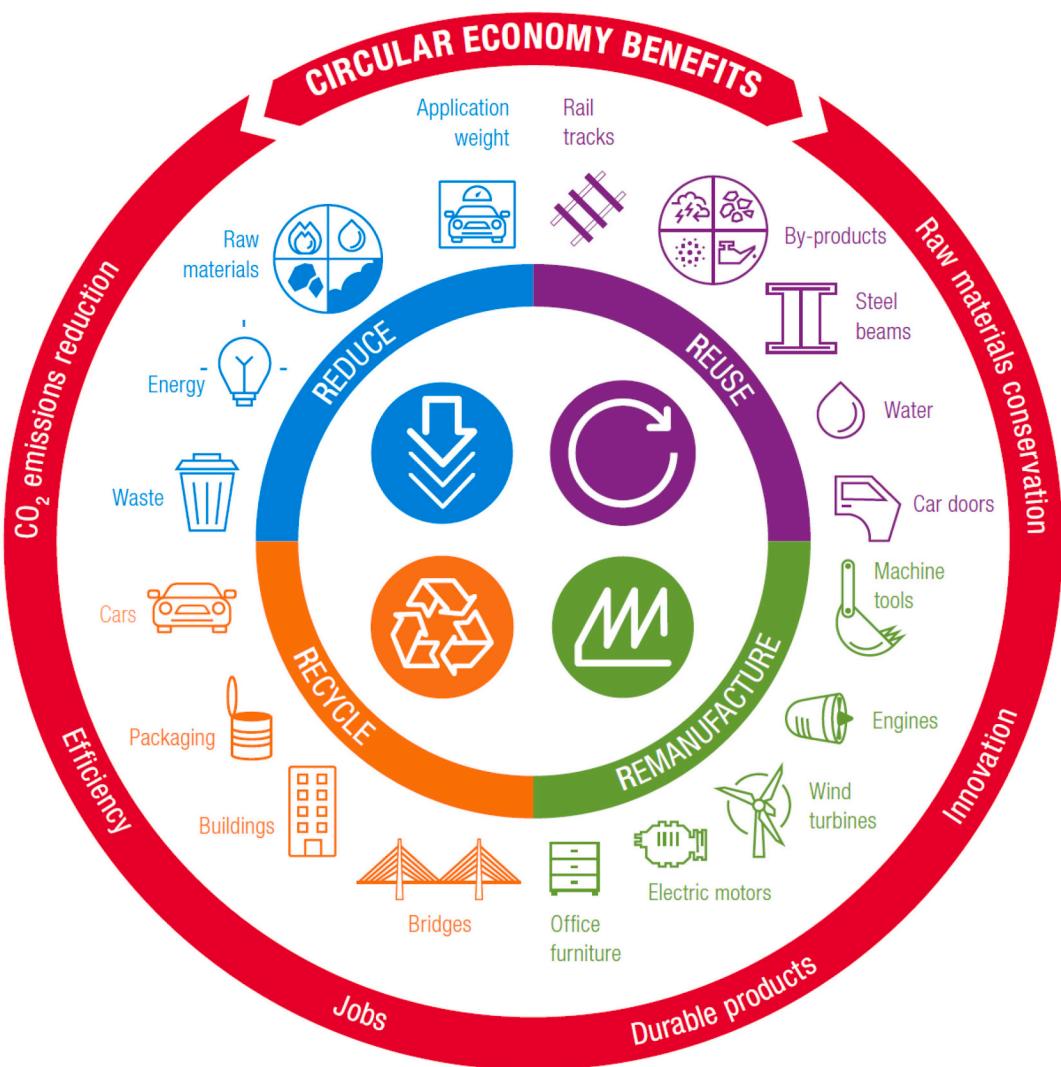
## 7. The barriers to decarbonizing iron and steel industry

The potentially attractive benefits identified in the previous section may give enough incentives to invest in the decarbonization innovations for the iron and steel industry. Unfortunately, those benefits are often vague to decision-makers, whereas the investment cost for decarbonization is regarded as an impending salient loss. Also, we usually face an insidious set of barriers and challenges exist disturbing that can disturb the achievement of decarbonizing investments. As the authors' of a previous review [42] addressed, the UK Department of Energy and Climate Change, and Department for Business, Innovation and Skills identified a number of general barriers to industrial decarbonization [10]:

high capital cost and long investment cycles, limited financing, risk of not meeting required product quality or changing character, risk of production disruption, shortage of skilled labor, shortage of demonstrated technologies, and lack of reliable and complete information.

The barriers to energy efficiency investments and improvements can be categorized into seven dimensions—technology related, information related, economic, behavioral, organizational, competence related, or awareness related [168] or using simplified three groups—market related barriers, organizational and behavioral barriers, and policy barriers [169]. Our review also identified three distinct barriers to decarbonizing iron and steel industry: financial and economic, organizational and managerial, and behavioral.

### 7.1. Financial and economic barriers


Although the benefits are evident, the decarbonization of the iron and steel industry needs substantial initial investment [108,170]. For many metals companies, it is extremely difficult to justify large upfront capital costs for decarbonization projects that have limited deployment and proven operational data [171]. The long life-cycles of steel plants (Fig. 5) and price volatility also make it difficult to integrate decarbonization efforts into steel operations when sites and projects are being initially built and developed [10]. Retrofitting operations is similarly difficult, as overhauling processes to accommodate new technologies without widely accepted carbon costs or a low-carbon steel market make it difficult to justify increased operational costs. Steelmakers in 2021 already faced challenges regarding supply chain disruptions, which added \$200–250 per ton to steelmaking costs [172].

Existing efforts to transition towards a sustainable iron and steel industry in Central-East Europe, including Russia and Ukraine could already face a financial barrier. For example, Russia has abundant and cheap fossil fuels and is the only country that uses OHF among major steel producing countries (see Section 2.2), although the share of steel production in OHF dropped from 22% in 1992 to nearly zero today [173]. Thus, it is not a simple matter to simply restructure the iron and steel industry with modern, more efficient equipment for Russia (we return to this issue in Section 9.1). Thanks to the cost-saving benefits of the iron and steel sector's decarbonizing measures, there are economical and impactful options in the industry, such as continuous casting, cogeneration, and recuperative burners. However, many robust decarbonization measures—coke dry quenching and heat recovery annealing, for example—are still expensive and are beyond carbon prices in current ETS markets [174] (Fig. 23).

### 7.2. Organizational and managerial barriers

The iron and steel sector is a consolidated industry (see Section 2.3). A fragmented industry is inclined to have organizational and managerial barriers such as difficulties in sharing innovations and best practices [42]. One might think that giant, multinational firms can readily implement innovations for decarbonization. However, the capital intensive and oligopolistic nature of the iron and steel sector hinders the low-carbon transformation of the industry, although it is true that the companies can invest in big research and development projects [175,176].

One study categorized the steel industry in India, the world's third-largest producer, as “low” market concentration but “high” government concentration from a GHG emissions perspective. In terms of techno-economic assessment, India's iron and steel industry has access to so-called “best available technologies” for decarbonization, but they are not economical without further support measures [177]. This is one piece of evidence that the iron and steel sector's decarbonization is a matter of organizational and economic feasibility and not just technological or market related.

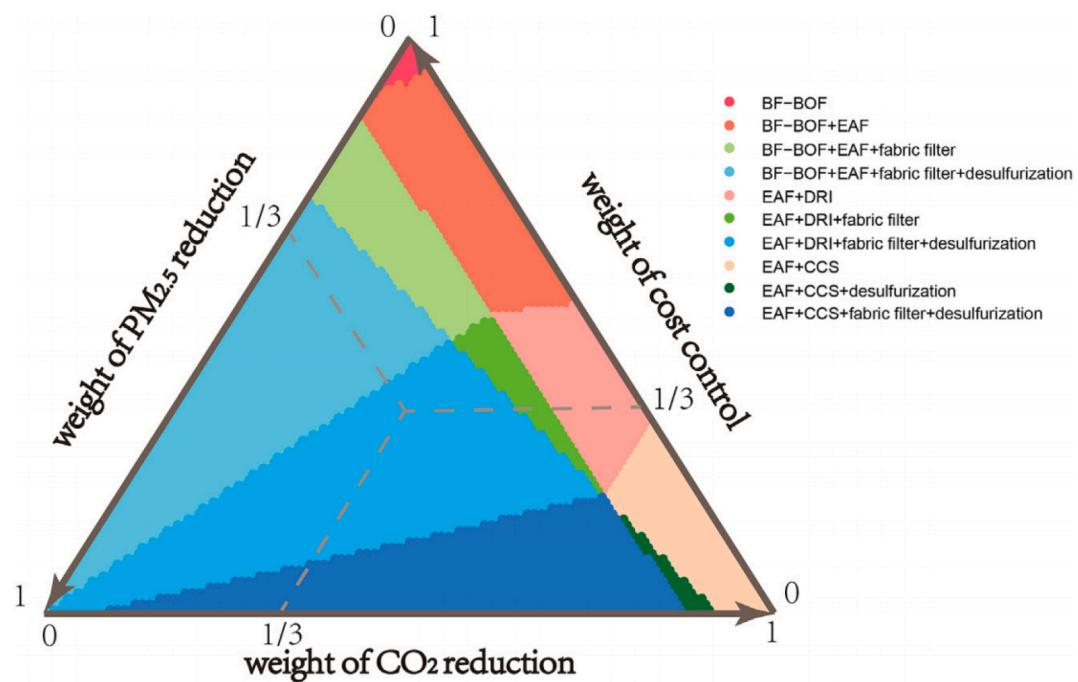


**Fig. 21.** Steel in the circular economy: the 4Rs.

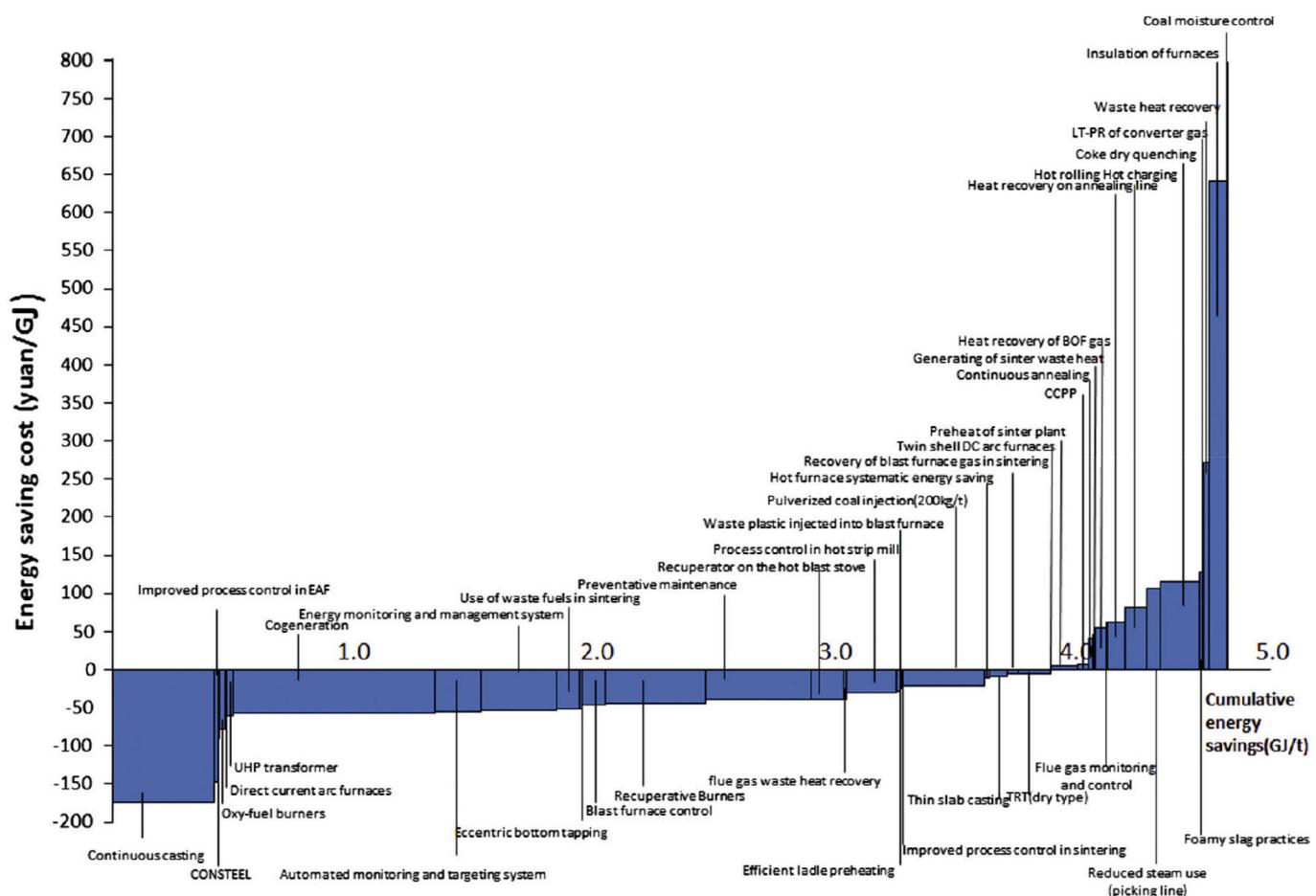
Source: [114].

Uncertainty and risks also prevent an active investment for decarbonization. One study revealed that decision-makers in large steel producers of Bangladesh are concerned with “high perceived risk due to uncertainty about future energy prices, slow rate of return and others,” “poor information quality regarding energy efficiency opportunities,” “uncertainty regarding hidden costs,” and “technical risk” when they decide on decarbonization or energy efficiency investments [178].

### 7.3. Behavioral barriers


Urbanization, modern city lifestyle, skyscrapers, and even wind turbines need more steel than in the past. We cannot blame the industry for this final class of barriers—convenient, safe, and even clean life generally take us in the direction of becoming more carbon intensive, rather than less. Moreover, steel products are durable—have a relatively long lifetime relative to other consumer goods. We may wait a hundred years or more to recycle or replace the steel in buildings, bridges, and infrastructure. Fig. 24 well describes the predominance of long service life steel products around us [114]. Only some metal products for daily life, such as steel cans and iron bars, have short service life. Thus, recycling, replacement, and secondary steel naturally have a time lag and hence are limited in their ability to serve as decarbonization options, although they have significant overall potential.

### 8. Policy instruments to overcome the barriers


Because of the consolidated nature of the iron and steel industry, relatively few players and countries provide the majority of global steel supply. The top six steel producing countries produce approximately 80% of steel globally, and the top 50 companies in the industry made 58.5% of the crude steel in 2019 (see Table 1 and Section 2). Consequently, there has been little attention to developing effective financing and business models for decarbonization since big players have enough capital to invest if the measures and innovations offer attractive returns.

However, there is a need for policy instruments to overcome the barriers and harness the dissemination of innovative, cross-cutting options for the industry's low-carbon future. Table 8 presents a collection of policy instruments from the literature to address the challenges to decarbonizing the iron and steel industry [6,179–187].

UK Climate Change Committee's recent report of net zero [188] suggests more proactive policy efforts as well as other well-known measures, such as energy and resource efficiency and CCS, across a mix of different industries, including iron and steel. Carbon taxes and regulatory standards could also be an effective measure for the decarbonization of the iron and steel industry [189,190] (Table 9), and *border-tariff adjustments* could minimize the risks of leakage and give a signal to other sectors, resulting in the price increase of carbon-intensive



**Fig. 22.** Relationship between CO<sub>2</sub> reductions, PM<sub>2.5</sub> reductions, and related costs of the iron and steel sector.  
Source: [167].



**Fig. 23.** Energy conservation supply curve with the discount rate 20%.  
Source: [174].

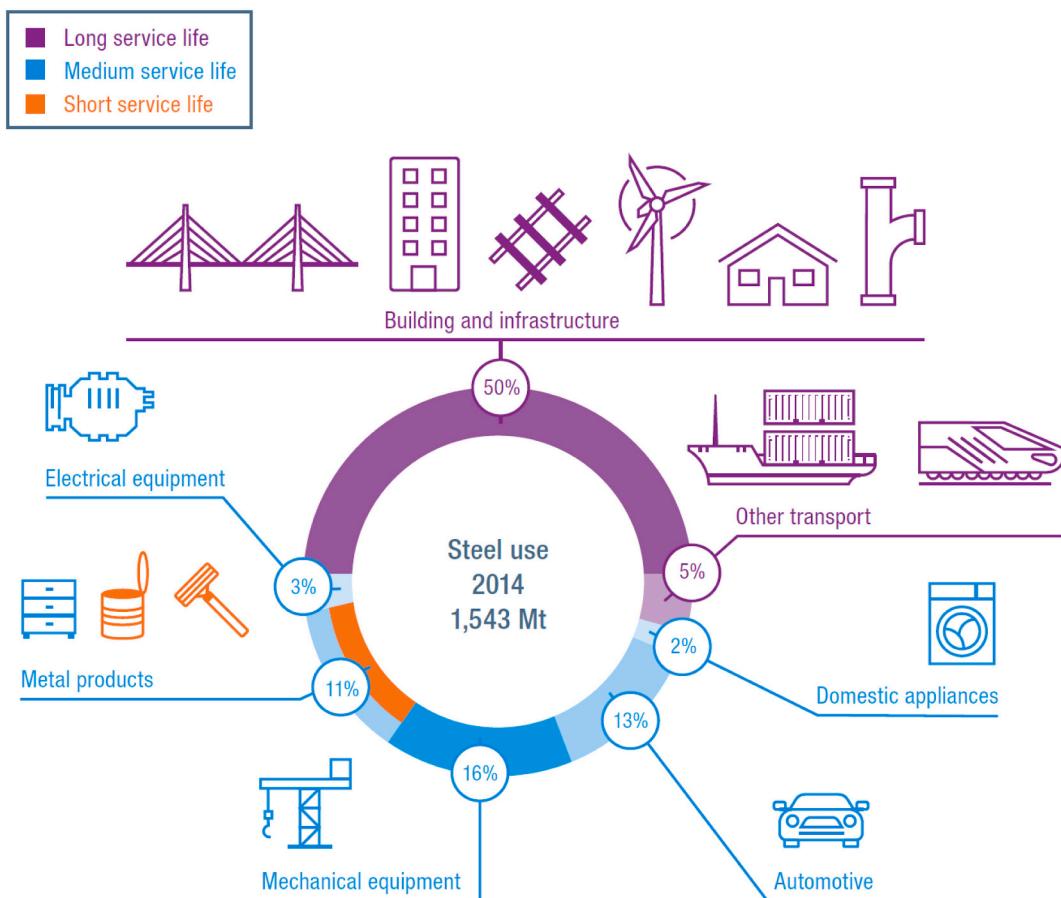



Fig. 24. Steel products and durability.

Source: [114].

imported goods.

Research & development of low-carbon technologies is an excellent answer to mitigate the climate crisis. For example, there is still potential to cut down the energy intensity in China's ferrous metal industry, especially in the S&P (smelting and pressing of ferrous metals) subsector. Compared with the international average standard, the energy intensity in the S&P industry is relatively high. Specifically, several measures can be used to reduce the energy intensity of China's FMI, i.e., increasing R&D subsidies for energy-saving and climate-friendly technologies and encouraging the diffusion of advanced equipment and technologies [191]. One research study also assessed decarbonization pathways for iron and steel through the 40 reviewed roadmaps and pathways (Fig. 25) [170]. Similar to our diagram for promising decarbonization options (Fig. 17), furnaces related to heating are the most mentioned topic for decarbonization R&D of the iron and steel sector.

One UK ERC study [192] reported the steel industry in the Republic of Korea as a representative example of policy-driven innovation. POSCO, a state-owned company in the past (not now), has adopted innovations in the iron and steel industry based on a clear strategy, R&D support for a university (POSTECH) and a research institute (RIST), and market creation under the Korean government's strategy [193]. Also, active transfer of innovative decarbonization technologies is essential. As one study [194] stated, a policy framework to support energy and industry transition could enable the environment for the transfer, such as hydrogen-based steel making. Simulations and assessments of the anticipated results for the decarbonization policies could also support investment and government intervention. One study presented the economic and environmental effects of China's national energy efficiency target [195], and another study appraised the economic benefits of the "Steel Environmental Assessment Program" in Japan [196].

Table 8

Policy mechanisms for the industrial decarbonization of iron and steel sector.

| Instrument                                        | Description                                                                                                                                                                                                                 |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carbon pricing                                    | National and/or regional pricing on carbon emissions, including direct carbon taxes and emissions trading schemes to establish markets for carbon permits that can also be traded and sold, with some free allowances given |
| Voluntary and mandatory energy efficiency schemes | National and subnational programs and voluntary initiatives intended to promote energy efficiency practices and processes                                                                                                   |
| Regulations on GHG emissions                      | Emission restrictions, such as relining ban of blast furnaces                                                                                                                                                               |
| Renewable energy incentives and guarantees        | Direct government incentives for industrial scale renewable energy applications such as heat pumps, biogas, or biomass                                                                                                      |
| Creation of low-carbon markets                    | Government created markets to offer premium prices for low-carbon products                                                                                                                                                  |
| Border-tariff adjustments                         | Restrictions placed on traded and imported carbon intensive goods, intended to reduce carbon leakage                                                                                                                        |
| Industry roadmaps                                 | The creation of industry roadmaps to guide firms with decarbonization efforts                                                                                                                                               |

Source: Compiled by the authors. Note: Any general renewable energy support policies (i.e. FITs) are not included.

**Table 9**

Policy evaluation criteria for the iron and steel sector.

| Criteria                                                                                     | Existing Clean Development Mechanism (CDM) | Harmonized carbon tax | Incremental emissions tax or intensity-based rewards | Regulatory standards |
|----------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|------------------------------------------------------|----------------------|
| 1. Short term: improve efficiency and CO <sub>2</sub> intensity of coal DRI and BF/BOF units | +                                          | ++                    | +                                                    | ++                   |
| 2. Medium term: encourage shift from coal DRI and small BF to large efficient BF units       | -                                          | +                     | -                                                    | ++                   |
| 3. Long term: encourage substitution of steel with low-carbon-intensive materials            | -                                          | +                     | -                                                    | N/A                  |
| 4. Overall effectiveness                                                                     | -                                          | ++                    | -                                                    | ++                   |
| 5. Ease of implementation                                                                    | +                                          | ++                    | -                                                    | +                    |
| 6. Ease of monitoring and verification                                                       | ++                                         | +                     | -                                                    | +                    |

Source: [189]. Note: +++ is very good and — means worst.

|                    | Iron & steel       | (Petro)-Chemical    | Cement                    | Pulp & Paper              | Ceramics                  | Glass                      | Food                      |
|--------------------|--------------------|---------------------|---------------------------|---------------------------|---------------------------|----------------------------|---------------------------|
| 1. Most mentioned  | Furnaces           | Catalytic Processes | Alternative Feedstock     | Industrial Ovens          | Furnaces                  | Furnaces                   | Process Heat Provision    |
| 2.                 | Electrolysis       | Heat Recovery       | Biomass & Bio-based Waste | Heat Recovery             | Heat Recovery             | Heat Recovery              | Industrial Ovens          |
| 3.                 | Flue Gas Recycling | Membrane Separation | CCS                       | CCS                       | CHP                       | Pre-Heater                 | CHP                       |
| 4.                 | CCS                | CHP                 | Furnaces                  | Biomass & Bio-based Waste | Biomass & Bio-based Waste | Oxyfuels                   | Biomass & Bio-based Waste |
| 5. Least mentioned | Heat Recovery      | CCS                 | Heat Recovery             | Process Heat Provision    | Alternative Feedstock     | Recycled Primary Materials | Membrane Separation       |

**Fig. 25.** Decarbonization R&D pathways for manufacturing industries.

Source: [170]. Notes: Orange color denotes the options related to heat, and green indicates alternative feedstock or fuels. Blue is the technology about chemical and mechanical processes, and CCS/gas recycling is marked in grey.

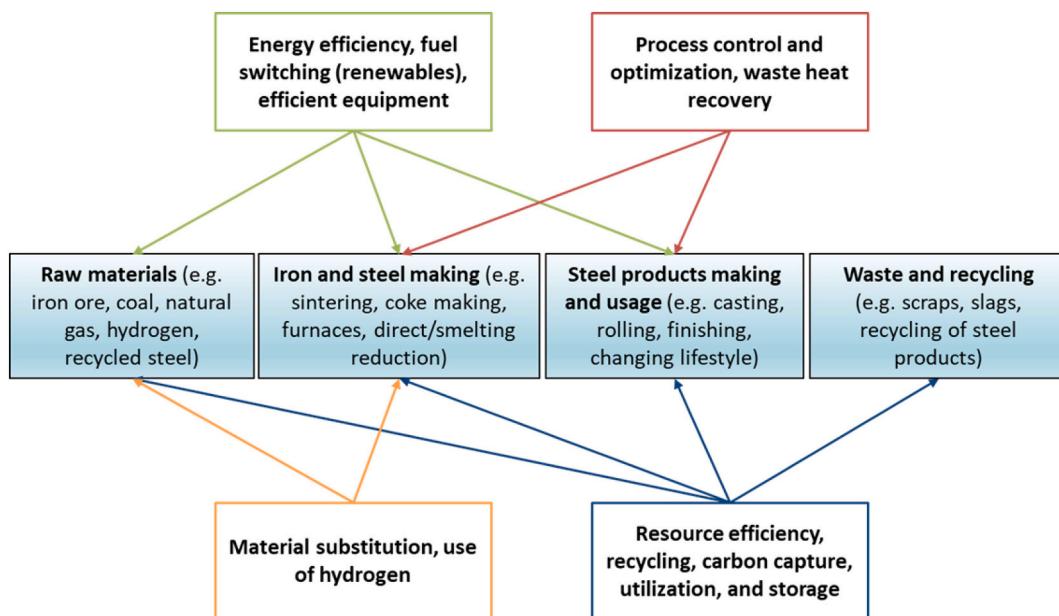
## 9. Gaps and future research agendas

The last finding of our systematic review considers gaps in current research. Three distinct areas—cross-cutting solutions, interconnection to other systems, and the long-term impacts of COVID-19—are developed to discuss gaps and future research agendas.

### 9.1. Identification and pursuit of cross-cutting solutions

The decarbonizing practices and innovations collected for the iron

and steel industry in [Section 5](#) are narrowly focused on a single process such as sintering or blast furnaces. Also, because of the industry's concentrated nature—the top seven countries account for about 79% of global production—most of the research is only for limited players and countries [22] (see [Table 1](#)). Consequently, just a few studies attempted to identify *cross-cutting* measures that generally seemed across different subsectors or countries. [Table 10](#) presents those cross-cutting options and examples specified.


A relatively short list of seven options in [Table 10](#) and the visualized relationship between those options and the sociotechnical system

**Table 10**

Crosscutting options for the decarbonization of the iron and steel system.

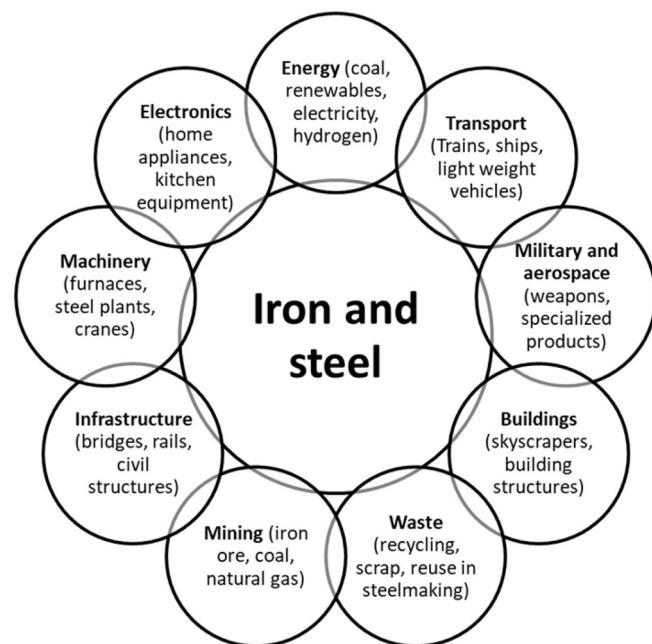
| Crosscutting option                      | Relevant for                                                                                 | Example(s)                                                                                                                                                                                                                                               | Identified by        |
|------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Energy efficiency                        | Raw material preparation, iron and steelmaking, steel products making, use of steel products | Efficient ovens, burners, kilns, furnaces, and compressors, efficient ladle preheating, top-pressure recovery turbines, efficient drives in rolling mill and machining                                                                                   | [56,78,136]          |
| Fuel switching                           | Raw material preparation, iron and steelmaking, steel products making                        | Substituting coal and oil with renewables or natural gas                                                                                                                                                                                                 | [66,197,198]         |
| Process control and optimization         | Iron and steelmaking, steel products making                                                  | Process modification of kilns, optimization of furnace, flue gas monitoring and control, improved process control, optimizing the process solution temperature, preventative maintenance                                                                 | [17,73,74,99]        |
| Heat recovery                            | Raw material preparation, iron and steelmaking, steel products making                        | Waste heat recovery from cooling water, annealing, and compressors                                                                                                                                                                                       | [91,199,200]         |
| Recycling and resource efficiency        | All processes and systems of the iron and steel sector                                       | Solid recovered fuels for a reducing agent, injection of pulverized coal, rotary hearth furnace dust recycling system, hot oxygen injection, recycling basic oxygen furnace slag, recycling of stainless steel dust, new scrap-based steelmaking process | [114,201,202]        |
| Hydrogen                                 | Raw material preparation, iron and steelmaking, steel products making                        | Low-carbon hydrogen-based direct reduction, off-gas hydrogen enrichment, electrolytic hydrogen blending, natural gas-based with high levels of electrolytic hydrogen blending, hydrogen for high-temperature heat (ancillary processes)                  | [52,72,203,204]      |
| Carbon capture, utilization, and storage | Raw material preparation, iron and steelmaking, steel products making                        | CO <sub>2</sub> removal for use or storage (BF) Natural gas-based with CO <sub>2</sub> capture (DRI) Smelting reduction with CCUS                                                                                                                        | [91,102,104,111,128] |

Source: Compiled by the authors.



**Fig. 26.** Visualizing crosscutting options for the decarbonization of the iron and steel system.  
Source: Authors.

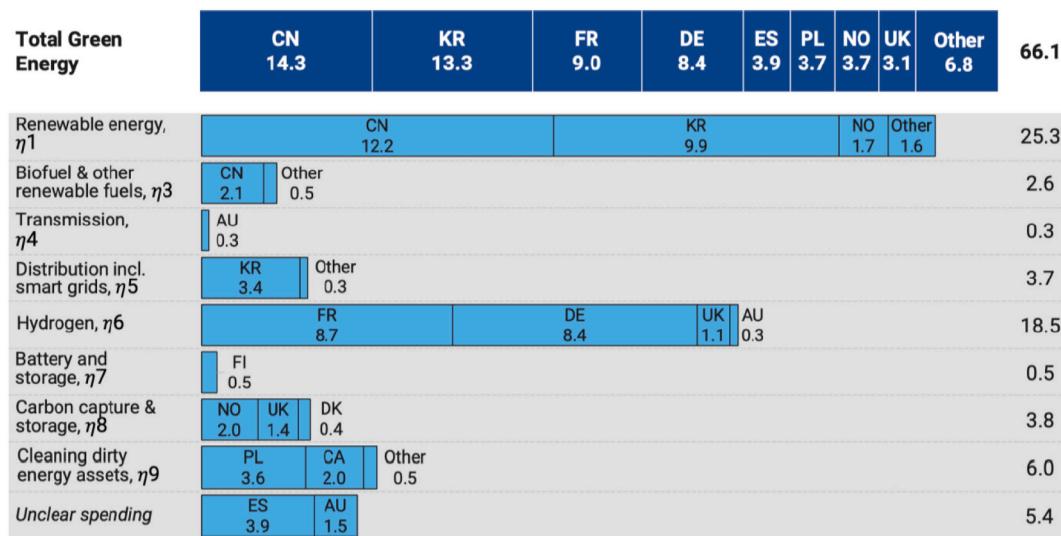
(Fig. 26) indicate a clear insight—we already have practical and widely applicable options to achieve the decarbonization of the iron and steel industry. Policymakers, stakeholders, and investors can make a vivid vision for decarbonization based on these cross-cutting solutions as well as commercially applied options now. Table 10 is not exhaustive but rather a starting point for a better understanding of options moving forward. We thus believe “more work on cross-cutting options” should be pursued.


In particular, CCUS plays an essential role as a crosscutting option for iron and steel systems' decarbonization [86,205]. Ramírez-Santos et al. [126] give us great insight into the progress of gas separation technologies in the iron and steel industry. The largest CO<sub>2</sub> emission source in an integrated steel plant would be a power plant. The power plant can receive all kinds of available residuary gases. However, the study also indicated that the original source of most of the CO<sub>2</sub> emissions is BF, around 69% of the overall CO<sub>2</sub> emission [126].

## 9.2. Interconnection to other systems and industries

The global iron and steel system does not exist alone. Like many other industries, it is coupled to other sociotechnical systems [42]. Fig. 27 depicts the interconnections between the iron and steel industry and the other noticeable sociotechnical systems. The energy system including fossil fuels and renewables, transport, military and aerospace, buildings, mining, civil infrastructure, machinery, electronics, and even waste (scraps) needs iron and steel products.

These interconnections can create compelling dependencies, but also result in synergies that are rarely examined in research. Material Flow Analysis (MFA) [206] and Life Cycle Assessment (LCA) [207] approaches could be helpful to elaborate the synergies. For example, one study assessed the feasibility of material and technical efficiency improvement in the life cycle of steel products [118] by combining MFA and LCA. Applying the hybrid approach suggested in [118], the impact of synergies could be assessed, such as an HSS regulation in infrastructure. We note, however, that significant data collection and modeling would be necessary for the analysis.


The importance of exploring these synergies is also evident in the growing role that electric arc furnaces and recycled scrap play in steel production and decarbonization efforts. Many of the institutions that have published carbon mitigation options and technology roadmaps



**Fig. 27.** Compelling interconnections of iron and steel to other sociotechnical systems.  
Source: Authors.

[6–10] highlight the importance of EAF and iron/steel scrap. Therefore, the interconnections between the iron and steel industry and the other noticeable sociotechnical systems can highlight the future viability of an EAF based system, the availability of scrap steel, and steel's general ability to meet shifting sociotechnical needs.

In terms of sectoral carbon emissions, one study reveals that the embodied carbon emission of the steel bar and other steel products are the largest component of total embodied carbon emissions for the residential buildings in China with an estimated at 25–31% share [208]. Another study claimed that the construction sector was the largest embodied energy consumption sector with a figure of 842.6 million tons



**Fig. 28.** Compelling total green energy spending by country and sub-archetype (Unit: billion US\$).

Source: [210], Global Recovery Observatory. Notes: For each sub-archetype, the largest contributors are listed by name, with smaller spenders categorized as “other.” AU: Australia, CA: Canada, CN: China, DE: Germany, ES: Spain, FI: Finland, FR: France, KR: South Korea, PL: Poland, NO: Norway, UK: United Kingdom.

of CO<sub>2</sub>e, accounting for 52.7% of total embodied emissions in China [209].

### 9.3. Research into the long-term impacts of COVID-19

A novel Coronavirus (COVID-19) emerged in early 2020 with significant demand and even production impacts on the iron and steel industry as well as the overall energy sector.

A multitude of factors contribute to uncertainty in the global outlook for the steel industry, affecting forecasters' ability to anticipate prices, future levels of demand, employment and many other aspects. Many of these factors are persistent, such as uncertainty about the future rate of growth in the global economy, or the levels of consumer demand in a given downstream market. But the current levels of uncertainty for the short-term outlook for the sector, like all other sectors of the economy, may well be unprecedented, largely relating to the unknown future impacts of the Covid-19 coronavirus pandemic.

The outbreak triggered a series of confinement procedures, and several downstream industries (construction, automotive etc.) have seen reductions in output. However, China's crude steel output has remained robust, with a 2.2% year-on-year increase to 503 Mt per year (in the first half of 2020). Stagnating and declining demand levels in its domestic and export markets indicate a significant accumulation of inventory during this period of strong production growth.

In production centers elsewhere the virus has had a much more profound impact on production levels. In the first half of 2020 steel production in Europe declined by 13% relative to the same period in 2019, by 17% in North America and 24% in India [6].

The longer-term impacts of the virus outbreak are even more uncertain. The way that other countries besides China respond to the outbreak, in terms of the duration and extent of confinement policies, and the level to which demand in various economies is restored—including the extent to which stimulus packages are aimed at infrastructure and other steel-intensive sectors—are the key determining factors that will affect the steel industry's outlook in the coming years [6].

Although stimulus packages have been generally disappointing regarding allocation of funds to sustainability-related investments, several European countries have earmarked investment for hydrogen and CCS, both of which are cornerstone technologies for iron and steel decarbonization [210]. As shown in Fig. 28, USD\$18.5 billion has been

allocated to hydrogen infrastructure with Germany and France leading the way. A further USD\$3.5B has been invested in CCS infrastructure with Norway and the UK each contributing more than USD\$1 billion.

Stimulus spending on R&D for industrial sustainability is also an opportunity. As shown in Fig. 29, USD\$29 billion has been committed to “green” R&D as part of stimulus packages, with USD\$5.5 billion focused on industry [210]. As shown in Fig. 29, South Korean leads this investment, which is consistent with the country's focus on “Innovation in the Green Industry” as part of its Green New Deal COVID-19 stimulus efforts [211]. One would expect the iron and steel industry to benefit from this stimulus given that South Korea is a major global steel producer and, as noted previously in this paper, serves as an example of a country that has undertaken policy-driven innovation in the iron and steel industry.

The need for target COVID-19 stimulus in the iron and steel industry has been highlighted by the IEA with particular focus on direct electrification of primary steelmaking [212]. We've discussed in this paper the breakthrough potential of molten oxide electrolysis to eliminate the need for direct use of fossil fuels in steel production and perhaps COVID-19 will lead to the necessary support for the technology to reach broad deployment.

## 10. Conclusion

Our modern life is built on iron and steel products. We are working and living in buildings and skyscrapers, and we need airplanes, vehicles, and bridges to move. Even in the sustainable, low-carbon future, there still are buildings, transport, infrastructures, and devices using iron and steel. This essential iron and steel industry is the most carbon-emitting sector among heavy industries and has been efficiently operated close to its thermodynamic limits. Thus, to break the limit, innovative decarbonization efforts are necessary. This is why we have done a critical and systematic review of the sociotechnical systems of iron and steel. Fig. 30 summarizes our review showing interventions, benefits, barriers, and policies for decarbonizing the iron and steel system.

Fig. 30 also reveals practical low-carbon interventions (shown in green). These range from material substitution in raw materials to reuse of steel products are part of the broader circular economy. These available technologies and approaches can coexist with no less than 86 current and breakthrough technologies and cross-cutting solutions such as hydrogen-based steel production and CCUS technologies (see Section

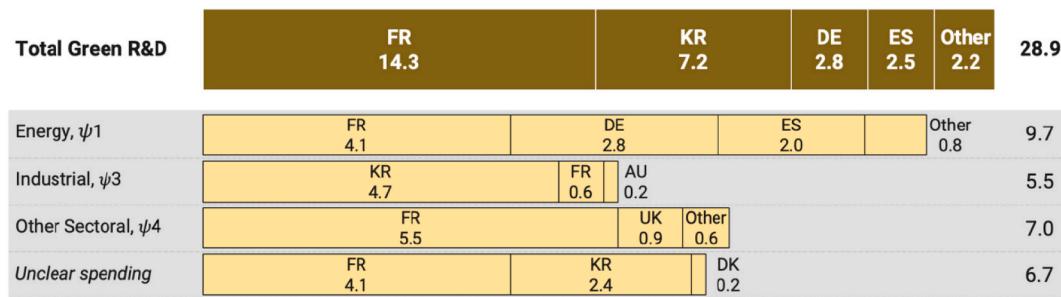



Fig. 29. Total green R&D spending by country and sub-archetype (Unit: billion US\$).

Source: [210], Global Recovery Observatory. Notes: For each sub-archetype, the largest contributors are listed by name, with smaller spenders categorized as “other.” AU: Australia, DE: Germany, DK: Denmark, ES: Spain, FR: France, KR: South Korea.

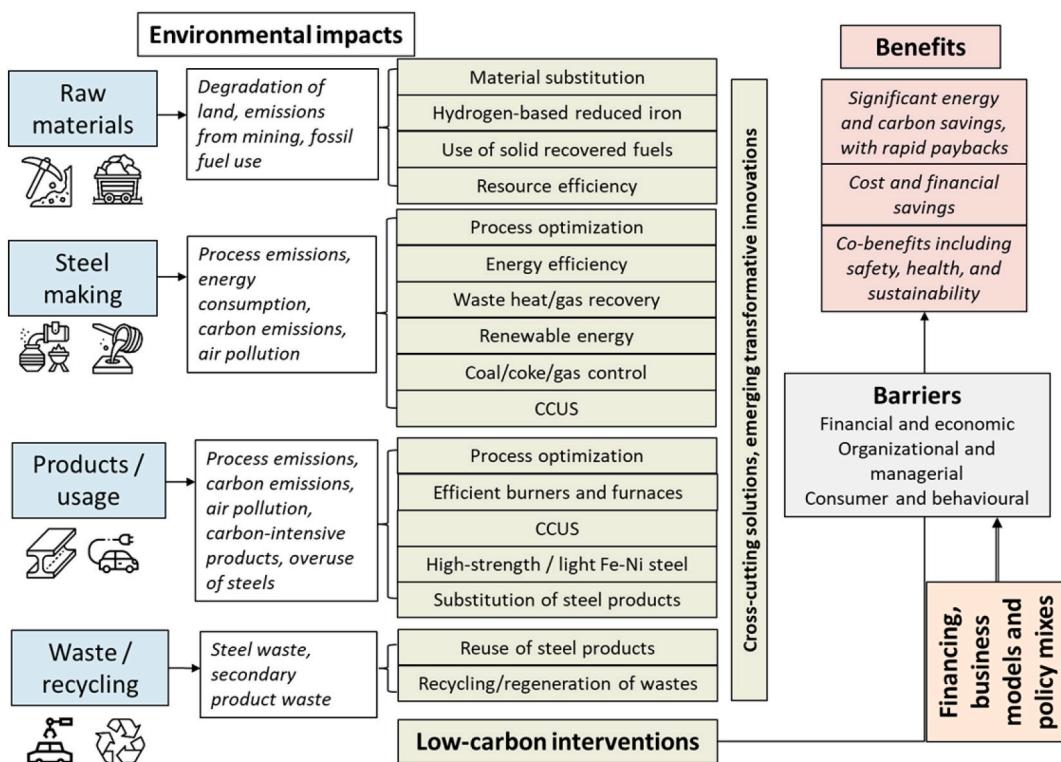



Fig. 30. Interventions, benefits, barriers, and policies for decarbonizing the iron and steel sociotechnical system.  
Source: Authors.

### 9.1).

Although there are barriers (shown in grey) at many levels to decarbonizing the iron and steel industry—financial, organizational and managerial, and behavioral—the benefits (shown in red) of the decarbonization are also considerable. Direct benefits from carbon reduction, energy savings, and financial savings, as well as environmental co-benefits, will shorten the payback period of decarbonization investments. Also, indirect benefits from the interconnected industries (Fig. 27) and policy instruments, financing solutions, and business models (shown in orange) can help tackle the barriers.

When the policymakers, business, and research community begin to address the decarbonizing options, barriers, and solutions more actively, and perhaps with the COVID-19 pandemic as an added catalyst, imminent problems by greenhouse gas emissions from the iron and steel system can be resolved and turned into another opportunity.

### Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

### Acknowledgments

The authors thank the anonymous peer reviewers for very helpful comments on earlier drafts of this manuscript. They would also like to acknowledge support from the Industrial Decarbonisation Research and Innovation Centre (IDRIC) in the United Kingdom, funded by the UKRI and EPSRC via Grant Number EP/V027050/1. Also, one of the authors of this paper (Sovacool) is the Editor-in-Chief for Energy Research & Social Science. He was not involved in managing the peer review or editorial process for this article.

## Appendix A

**Table A1**

Description of emerging and potentially transformative innovations for the iron and steel industry.

| Innovation                                                               | Description                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solid recovered fuels for use as reducing agents                         | Recovered wastes, such as plastics or granulated rubber, could be used as reducing agents (producing CO and H <sub>2</sub> ) in blast furnaces.                                                                                                                          |
| Heat recovery from sinter cooler                                         | There are two potential reusable waste heat in sinter plants—exhaust gas from sintering machines and the cooling air heat.                                                                                                                                               |
| Single-chamber-system coking reactors                                    | Single-chamber-system (SCS) coking reactors are huge coke ovens with widths of 450–850 mm. The SCS reactors have independent process-controlled modules that allow thinner heating walls to improve heat transfer and design flexibility.                                |
| Use of recuperative burners                                              | A recuperator, a gas-to-gas heat exchanger in the recuperative burner of a furnace, can reduce fuel consumption about 10–20% than the furnaces without the recuperative burner.                                                                                          |
| Process modification of kilns                                            | Process modifications of kilns, such as green balls heated and cooled in a grate-kiln, can cut energy use and CO <sub>2</sub> emissions.                                                                                                                                 |
| Optimization of furnace                                                  | Furnace optimizations using computational fluid dynamics, simulation (virtual furnace), and X-ray diffraction analytical techniques can improve energy efficiency and productivity.                                                                                      |
| Waste heat recovery                                                      | We can recover waste heat in blast furnaces, such as molten slag heat, in three forms—hot air or steam recovery, conversion to chemical energy, and thermoelectric power generation.                                                                                     |
| Use of ceramic ladles instead of cast iron pipes                         | In the iron and steel making processes, ladles are often uncovered because lids are heavy and too hot to manage. Thus, closing the lid by using ceramic ladles can save significant energy.                                                                              |
| Efficient ladle preheating                                               | Heat losses in the ladle preheating can be reduced by temperature controls, installing hoods, efficient ladle management, or oxyfuel burners.                                                                                                                            |
| Radiation recuperators for ladle furnace                                 | Installing recuperators for the ladle can improve fuel efficiency.                                                                                                                                                                                                       |
| Coal moisture control                                                    | Moisture control of feed coal in the coke making process improves coke quality and productivity.                                                                                                                                                                         |
| Coke dry quenching                                                       | Coke dry quenching (CDQ) reduces dust emissions, enhances coke quality, and recovers sensible heat from the high-temperature coke.                                                                                                                                       |
| Injection of pulverized coal                                             | Coke making process can be skipped by injecting pulverized coal. Fine coal granules are injected into the blast furnaces to supply carbon sources. Skipping energy-intensive coke making process means substantial energy saving and CO <sub>2</sub> emission reduction. |
| Top-pressure recovery turbines                                           | If the top gas pressure of blast furnaces is high enough to generate electricity, then applying top-pressure recovery turbines will be an economically feasible option.                                                                                                  |
| Recovery of BF/BOF gas                                                   | Carbon monoxide and hydrogen in the blast furnace gas are potential energy sources and can be used as a fuel through enrichment with natural gas or coke oven gas.                                                                                                       |
| Charging carbon composite agglomerates                                   | Applying the carbon composite agglomerates, the mixtures of fine iron ore and carbonaceous materials, in blast furnaces and electric arc furnaces can improve reduction rates and save fuels.                                                                            |
| Near net shape casting (thin slab)                                       | Near-net-shape casting is the integrated process of casting and hot rolling. This integration reduces reheating the steel before rolling and thus saves energy.                                                                                                          |
| Bottom stirring/stirring gas injection                                   | Injecting an inert gas to increase stirring in the bottom of the electric arc furnaces can make the heat transfer efficient and save electricity consumption.                                                                                                            |
| Use of foamy slag practices                                              | Heat losses in electric arc furnaces can be reduced by covering the arc and melt surface of furnaces with foamy slag.                                                                                                                                                    |
| Use of oxyfuel burners                                                   | Oxy-fuel burners in electric arc furnaces can increase heat transfer (reduces heat losses), help to remove impurities, such as phosphorus and silicon, and reduce electrode consumption.                                                                                 |
| DC arc furnace                                                           | Direct current (DC) based electric arc furnace has high productivity, uses less electricity, consumes less electrode, and needs lower maintenance costs than conventional furnaces.                                                                                      |
| Scrap preheating and continuous charging                                 | Efficient scrap preheating and continuous charging, such as Consteel, can improve the heat recovery rate and reduce handling costs and time.                                                                                                                             |
| Flue gas monitoring and control                                          | Flue gas (oxygen and carbon monoxide) monitoring and control enable the optimization of fuel and air mixture, and this can improve the energy efficiency of the process.                                                                                                 |
| Eccentric bottom tapping                                                 | Eccentric bottom tapping in electric arc furnaces enables slag-free tapping and reduces tap-to-tap time and electrode consumption.                                                                                                                                       |
| Improved process control                                                 | Improved process control of electric arc furnaces includes process optimization via (real-time) monitoring and controlling systems with sensors. Optimized steel bath temperature and carbon levels can reduce electricity consumption in the process.                   |
| Ultra-high-power transformer                                             | Applying ultra-high power (UHP) transformer for the furnace operation can reduce energy losses and increase productivity.                                                                                                                                                |
| Twin shell furnace                                                       | The twin shell furnace is based on shaft technology. A double (two identical) shaft arrangement can improve the efficiency of preheating.                                                                                                                                |
| Hot charging                                                             | Charging slabs at a high temperature (hot charging) in the reheating furnaces of the rolling mill can reduce energy use and material losses and improve steel quality and productivity.                                                                                  |
| Recuperative or regenerative burner                                      | Recuperative and regenerative burners can be utilized not only for iron and steel making processes but also in steel product manufacturing.                                                                                                                              |
| Use of ceramic low thermal mass insulators for reheating furnace         | Compared to conventional insulation materials, ceramic low thermal mass insulation materials can reduce heat losses in reheating furnaces.                                                                                                                               |
| Controlling oxygen level and variable speed drive on combustion air fans | The optimal oxygen (air) level in a combustion process is essential to improve energy efficiency. We can find the optimal level by applying variable speed drives of air fans in the reheating furnace.                                                                  |
| Efficient drives in rolling mill and machining                           | Replacing the air conditioning drives in a rolling mill and machining with high-efficiency motors can save electricity consumption.                                                                                                                                      |
| Waste heat recovery (cooling water, annealing, and compressor)           | We can recover the waste heat from cooling water, annealing, and compressors of the steel product manufacturing processes, such as hot strip mills.                                                                                                                      |
| Reduced steam use for pickling                                           | Installing lids and floating balls on the top of the bath in the acid pickling line can prevent heat losses via evaporation.                                                                                                                                             |

(continued on next page)

**Table A1 (continued)**

| Innovation                                                                                                                                                                                                       | Description                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automated monitoring and targeting systems                                                                                                                                                                       | In a cold strip (rolling) mill, an automated monitoring and targeting system can reduce energy demand and effluents.                                                                                                                                                                                   |
| Thermal insulation for plating bath, Automated bath cover                                                                                                                                                        | Automated bath cover and thermal insulation of plating bath can reduce energy losses in strip mills.                                                                                                                                                                                                   |
| Compressed air network modification                                                                                                                                                                              | Modifying (optimizing) a compressed air network and motor systems in steel product manufacturing can reduce waste heats and energy use.                                                                                                                                                                |
| Optimizing the process solution temperature                                                                                                                                                                      | A heat treatment process and thermal optimization in steel product manufacturing, such as continuous casting, can reduce energy consumption for the process.                                                                                                                                           |
| Use of high-strength steel                                                                                                                                                                                       | High-strength steel (HSS) consumes less raw materials compared to standard steel products at similar specifications. Also, light product weight, especially for vehicles, needs fewer fuels to move the same distance. Thus, in terms of lifecycle, the HSS significantly less emits greenhouse gases. |
| Rotary hearth furnace dust recycling system                                                                                                                                                                      | Recycling steelmaking dust, including iron and zinc dust, can save raw materials inputs.                                                                                                                                                                                                               |
| Injection of plastic waste                                                                                                                                                                                       | Plastic wastes can replace coke for the reduction reaction in blast furnaces. Although plastics cannot replace all coke functions, such as moving the gases and liquids, we can save substantial energy through the replacement at a certain level.                                                    |
| Primary Energy Melter                                                                                                                                                                                            | Primary Energy Melter (PEM) enables the melting of low-quality scrap and charges it together with hot metals. PEM can thus reduce energy and material consumption.                                                                                                                                     |
| Advanced control of heating walls in coke ovens                                                                                                                                                                  | Advanced control of heating walls, such as individual control and diagnostic system, can improve energy efficiency in coke ovens.                                                                                                                                                                      |
| Hot oxygen injection                                                                                                                                                                                             | Injecting high-temperature oxygen directly in the blast furnace blowpipe and tuyere can offer better coal dispersion at high oxygen concentrations. Thus, the injection of pulverized coal accompanies hot oxygen injection for optimal performance.                                                   |
| Tecnored                                                                                                                                                                                                         | The Tecnored, a Brazilian process, uses agglomerated pellets or briquettes for iron making. With the flexibility of using various types of solid fuels, the Tecnored process can reduce greenhouse gas emissions.                                                                                      |
| Cyclone converter furnace                                                                                                                                                                                        | The cyclone converter furnace is made of a cyclone for the pre-reduction of the iron ore. Combining this pre-reduction unit with the final reduction process can reduce heat losses.                                                                                                                   |
| Continuous horizontal sidewall scrap charging                                                                                                                                                                    | Continuous horizontal sidewall scrap chargers can mitigate the problems in conventional scrap preheaters, such as frequent maintenance, space constraint, and the need for a post-combustion burner.                                                                                                   |
| Energy monitoring and management system in casting                                                                                                                                                               | Energy monitoring and management system in the casting process can make the process more energy-efficient through energy assessment and optimization.                                                                                                                                                  |
| Preventative maintenance in steel mills or EAF plants                                                                                                                                                            | Preventative maintenance in steel mills or EAF plants through sensors and data analysis can improve the productivity of the mills and reduce overall energy consumption per unit production.                                                                                                           |
| Variable speed drives for flue gas control, pumps, fans in integrated steel mills                                                                                                                                | Variable speed drives mentioned above can be applied for not only reheating furnaces but also pumps and (ventilation and combustion) fans in integrated steel mills.                                                                                                                                   |
| Cogeneration for the use of untapped coke oven gas, blast furnace gas, and basic oxygen furnace-gas in integrated steel mills                                                                                    | Cogeneration (or combined heat and power) for the gases in integrated steel mills is an energy-efficient way to use heat and electricity.                                                                                                                                                              |
| Additive manufacturing                                                                                                                                                                                           | A digitalized production process, additive manufacturing, can minimize material losses and facilitate lighter-weight parts design in steel product manufacturing.                                                                                                                                      |
| Recycling basic oxygen furnace slag                                                                                                                                                                              | The recycling of slags can reduce the landfill disposal of byproducts from blast furnaces and basic oxygen furnaces. However, it still faces many technical and economic challenges.                                                                                                                   |
| Recycling of stainless steel dust                                                                                                                                                                                | The stainless steel dust in electric arc furnaces can also be recycled by re-injection into the furnaces and improve the energy efficiency of the steelmaking.                                                                                                                                         |
| Regeneration of hydrochloric acid pickling liquor                                                                                                                                                                | The pickling process generates considerable spent pickle liquor, and regenerating it can reduce wastes and energy use because the acid spent pickle liquor should be disposed of after chemical neutralization.                                                                                        |
| Recycling of waste oxides in steelmaking furnace                                                                                                                                                                 | Recycling waste oxides in steelmaking furnaces and mills, such as blast furnaces, electric arc furnaces, and rolling mills, can save raw materials and energy.                                                                                                                                         |
| Low-carbon hydrogen-based direct reduction                                                                                                                                                                       | Hydrogen-based steelmaking routes offer great potential for decarbonization. However, note that they strongly depend on the carbon footprint of hydrogen production.                                                                                                                                   |
| Charcoal in the sintering process                                                                                                                                                                                | Charcoal is an attractive alternative to coke breeze in the sintering process.                                                                                                                                                                                                                         |
| Torrefied biomass                                                                                                                                                                                                | Torrefied biomass, biochar, can be used as an auxiliary reductant.                                                                                                                                                                                                                                     |
| Plasma blast furnace                                                                                                                                                                                             | Plasma technology can be used for heat support for cupola and blast furnaces.                                                                                                                                                                                                                          |
| CO <sub>2</sub> removal for use or storage, Natural gas-based DRI with CO <sub>2</sub> capture                                                                                                                   | CCS and CCUS technologies can be applied to iron and steel making processes. Please see the references in the main body of the text.                                                                                                                                                                   |
| Electrolytic H <sub>2</sub> blending (BF), Natural gas-based DRI with high levels of low or zero-carbon electrolytic H <sub>2</sub> blending, DRI based solely on low or zero-carbon electrolytic H <sub>2</sub> | Also, low or zero-carbon hydrogen produced by electrolysis (green hydrogen) can be applied to iron and steel making processes.                                                                                                                                                                         |
| Paired straight hearth furnace                                                                                                                                                                                   | Paired straight hearth (PSH) furnace is more productive than conventional furnaces. The PSH furnaces are charged with "eight" cold-bonded self-reducing pellets, whereas the traditional rotary hearth furnaces use only two or three.                                                                 |
| Molten oxide electrolysis                                                                                                                                                                                        | Molten oxide electrolysis (MOE) could be a game-changer of the steelmaking process. Unlike traditional steel production, MOE produces no carbon emissions if powered by zero-carbon electricity sources.                                                                                               |
| Suspension hydrogen reduction of iron oxide concentrate                                                                                                                                                          | Flash smelting uses hydrogen as a reductant. Iron ore concentrates react with reductants, such as hydrogen, natural gas, or synthetic gas.                                                                                                                                                             |
| Ironmaking using biomass and waste oxides                                                                                                                                                                        | Replacing fossil fuels, especially coal, in the ironmaking processes with biomass and waste oxides can curtail energy use and CO <sub>2</sub> emissions.                                                                                                                                               |
| New scrap-based steelmaking process                                                                                                                                                                              | A new, efficient scrap-based steelmaking process, such as a counter-current reactor, can reduce primary energy use in the scrap heating and melting steps.                                                                                                                                             |
| In-situ real-time measurement of melt constituents                                                                                                                                                               | Off-line molten material analysis to check the composition of melt constituents is time-consuming and expensive. In-situ real-time measurement thus saves time and energy.                                                                                                                             |
| Continuous steelmaking for EAF                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |

(continued on next page)

Table A1 (continued)

| Innovation                                                  | Description                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Smelting reduction with CCUS                                | The continuous steelmaking, continuous process from crude steel to the casting mold in EAF, can improve energy efficiency and productivity.                                                                                                                                                       |
| Low or zero-carbon H <sub>2</sub> for high-temperature heat | Carbon capture, utilization, and storage technologies can be applied in a smelting reduction process (i.e., HIsarna process, ULCOS).                                                                                                                                                              |
| Next-generation system for scale-free steel reheating       | The coal-based high temperature for the iron reduction can be replaced with green hydrogen (ancillary processes).                                                                                                                                                                                 |
| Thermochemical recuperation for steel reheating furnaces    | Scale formation hinders gas flow and heat transfer and compromises steel quality. During the steel reheating process, 1–2% of steel forms scale on the steel surface and furnaces. Thus, scale-free steel reheating can reduce the energy and costs of the process.                               |
| Oxygen-rich furnace system                                  | Thermochemical recuperators (air heat exchangers) can improve the steel reheating efficiency by recovering sensible heat in the flue gases.                                                                                                                                                       |
| Integrating steel production with mineral sequestration     | A low NO <sub>x</sub> burner with oxygen enrichment can reduce CO <sub>2</sub> emissions in the furnaces. CO <sub>2</sub> sequestration in the form of solid carbonate can be integrated into the steelmaking process. The iron oxides from peridotite ores can chemically bind CO <sub>2</sub> . |

Source: Authors. The relevant references are provided in the main body of the text.

## References

- [1] USGS, Iron and Steel Statistics and Information. Reston, VA, 2021.
- [2] T. Vass, P. Levi, A. Gouy, H. Mandová, Iron and Steel. Paris, 2021.
- [3] IEA, Iron and Steel. International Energy Agency. <https://www.iea.org/reports/iron-and-steel>, 2020. (Accessed 24 January 2020).
- [4] A. Hasenbeigi, L.K. Price, A.T. McKane, *The State-of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook*, 2010.
- [5] Worldsteel Association, Fact Sheet: Energy use in the steel industry. Worldsteel Assoc. [https://www.worldsteel.org/en/dam/jcr:f07b864c-908e-4229-9f92-669f1c3abf4c/fact\\_energy\\_2019.pdf](https://www.worldsteel.org/en/dam/jcr:f07b864c-908e-4229-9f92-669f1c3abf4c/fact_energy_2019.pdf), 2019, (Accessed 3 January 2020).
- [6] IEA, Iron and Steel Technology Roadmap. Paris, 2020.
- [7] (EUROFER) The European Steel Association, Low Carbon Roadmap: Pathways to a CO<sub>2</sub>-Neutral European Steel Industry 18, 2019.
- [8] A. Hasenbeigi, L. Price, M. Arens, Emerging Energy-efficiency and Carbon Dioxide Emissions-Reduction Technologies for the Iron and Steel Industry. Berkeley, CA, 2013.
- [9] M. Wörther, F. Schuler, N. Voigt, T. Schmidt, P. Dalhmann, H. Bodo Lüngen, et al., Steel's Contribution to a Low-carbon Europe in 2050, 2013.
- [10] WSP, Parsons Brinckerhoff, DNV GL, Industrial Decarbonisation and Energy Efficiency Roadmaps to 2050: Iron and Steel. Montréal, 2015.
- [11] A. Ranzani da Costa, D. Wagner, F. Patisson, Modelling a new, low CO<sub>2</sub> emissions, hydrogen steelmaking process, *J. Clean. Prod.* 46 (2013) 27–35, <https://doi.org/10.1016/j.jclepro.2012.07.045>.
- [12] A. Sgobbi, W. Nijs, R. De Miglio, A. Chioldi, M. Gargiulo, C. Thiel, How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system, *Int. J. Hydrog. Energy* 41 (2016) 19–35, <https://doi.org/10.1016/j.ijhydene.2015.09.004>.
- [13] K. Meijer, M. Denys, J. Lasar, J.-P. Birat, G. Still, B. Overmaat, ULCOS: ultra-low CO<sub>2</sub> steelmaking, *Ironmak. Steelmak.* 36 (2009) 249–251, <https://doi.org/10.1179/174328109X439298>.
- [14] H. Stoopajarvi, K. Umeki, E. Mousa, A. Hedayati, H. Romar, A. Kempainen, et al., Use of biomass in integrated steelmaking – status quo, future needs and comparison to other low-CO<sub>2</sub> steel production technologies, *Appl. Energy* 213 (2018) 384–407, <https://doi.org/10.1016/j.apenergy.2018.01.060>.
- [15] S. Jahanshahi, J.G. Mathieson, M.A. Somerville, N. Haque, T.E. Norgate, A. Deep, et al., Development of low-emission integrated steelmaking process, *J. Sustain. Metall.* 1 (2015) 94–114.
- [16] C.-C. Cormos, Evaluation of reactive absorption and adsorption systems for post-combustion CO<sub>2</sub> capture applied to iron and steel industry, *Appl. Therm. Eng.* 105 (2016) 56–64, <https://doi.org/10.1016/j.applthermaleng.2016.05.149>.
- [17] R.Q. Wang, L. Jiang, Y.D. Wang, A.P. Roskilly, Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: a review, *J. Clean. Prod.* 274 (2020), 122997, <https://doi.org/10.1016/j.jclepro.2020.122997>.
- [18] J. Zhao, H. Zuo, Y. Wang, J. Wang, Q. Xue, Review of green and low-carbon ironmaking technology, *Ironmak. Steelmak.* 47 (2020) 296–306.
- [19] X. Zhang, K. Jiao, J. Zhang, Z. Guo, A review on low carbon emissions projects of steel industry in the world, *J. Clean. Prod.* 306 (2021), 127259, <https://doi.org/10.1016/j.jclepro.2021.127259>.
- [20] S. Roudier, L.D. Sancho, R. Remus, M. Aguado-Monsonet, Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control, 2013.
- [21] K. Rechberger, A. Spanlang, A. Sasiain Conde, H. Wolfmeir, C. Harris, Green hydrogen-based direct reduction for low-carbon steelmaking, *Steel Res. Int.* 91 (2020) 1–10, <https://doi.org/10.1002/srin.202000110>.
- [22] World Steel Association, Steel Statistical Yearbook 2020. Brussels, 2020.
- [23] M. Azadi, S.A. Northey, S.H. Ali, M. Edraki, Transparency on greenhouse gas emissions from mining to enable climate change mitigation, *Nat. Geosci.* 13 (2020) 100–104, <https://doi.org/10.1038/s41561-020-0531-3>.
- [24] A. Kumar Katta, M. Davis, A. Kumar, Assessment of greenhouse gas mitigation options for the iron, gold, and potash mining sectors, *J. Clean. Prod.* 245 (2020), 118718, <https://doi.org/10.1016/j.jclepro.2019.118718>.
- [25] World Steel Association, The language of steel. World Steel Assoc. <https://www.worldsteel.org/about-steel/steel-glossary.html>, 2021. (Accessed 17 July 2021).
- [26] World Steel Association, Overview of the steelmaking process. World Steel Assoc, in: [https://www.worldsteel.org/en/dam/jcr:177c8e5c-e02a-4e08-9dc6-cce7372b41c2/Overview%2520of%2520the%2520Steelmaking%2520Process\\_poster.pdf](https://www.worldsteel.org/en/dam/jcr:177c8e5c-e02a-4e08-9dc6-cce7372b41c2/Overview%2520of%2520the%2520Steelmaking%2520Process_poster.pdf), 2013. (Accessed 17 July 2021).
- [27] Worldsteel Association, *World Steel in Figures* 2019. Brussels, 2019.
- [28] Worldsteel Association, *Global Steel Market Overview*, Glob. Forum Steel Excess Capacit., Tokyo, 2019.
- [29] D. Godden, *The Impact of the European Steel Industry on the EU Economy*. Oxford, 2019.
- [30] A. von Gleich, R.U. Ayres, S. Gössling-Reisemann, *Sustainable Metals Management: Securing Our Future-Steps Towards a Closed Loop Economy* 19, Springer Science & Business Media, 2007.
- [31] P. Crompton, J.-B. Lesourd, Economies of scale in global iron-making, *Resour. Policy* 33 (2008) 74–82, <https://doi.org/10.1016/j.resourpol.2007.10.005>.
- [32] Worldsteel Association, *2020 World Steel in Figures*. Brussels, 2020.
- [33] A.C.H. Skelton, J.M. Allwood, The incentives for supply chain collaboration to improve material efficiency in the use of steel: an analysis using input output techniques, *Ecol. Econ.* 89 (2013) 33–42, <https://doi.org/10.1016/j.ecolecon.2013.01.021>.
- [34] Y. Yoon, Y.-K. Kim, J. Kim, Embodied CO<sub>2</sub> emission changes in manufacturing trade: structural decomposition analysis of China, Japan, and Korea, *Atmosphere* 11 (2020), <https://doi.org/10.3390/atmos11060597>.
- [35] J. Allwood, C. Dunant, R. Lupton, A. Gonzalez Cabrera Honorio Serrenho, *Steel Arising: Opportunities for the UK in a Transforming Global Steel Industry*, 2019.
- [36] W. Haas, F. Krausmann, D. Wiedenhofer, M. Heinz, How circular is the global economy?: an assessment of material flows, waste production, and recycling in the European Union and the world in 2005, *J. Ind. Ecol.* 19 (2015) 765–777.
- [37] S. Pauliuk, T. Wang, D.B. Müller, Steel all over the world: estimating in-use stocks of iron for 200 countries, *Resour. Conserv. Recycl.* 71 (2013) 22–30, <https://doi.org/10.1016/j.resconec.2012.11.008>.
- [38] Worldsteel Association, *Product Sustainability*. <https://www.worldsteel.org/about-steel/product-sustainability.html>, 2020. (Accessed 8 March 2021).
- [39] EPA, *Advancing Sustainable Materials Management: 2018 Fact Sheet*. Washington D.C., 2020.
- [40] E. Donskoi, A. Poliakov, J.R. Manuel, in: Lu LBT-IO (Ed.), *4 - Automated Optical Image Analysis of Natural and Sintered Iron Ore*, Woodhead Publishing, 2015, pp. 101–159, <https://doi.org/10.1016/B978-1-78242-156-6.00004-6>.
- [41] A. Carpenter, CO<sub>2</sub> abatement in the iron and steel industry, *IEA Clean Coal Cent.* 25 (2012).
- [42] B.K. Sovacool, M. Bazilian, S. Griffiths, J. Kim, A. Foley, D. Rooney, Decarbonizing the food and beverages industry: a critical and systematic review of developments, sociotechnical systems and policy options, *Renew. Sust. Energ. Rev.* 143 (2021), 110856, <https://doi.org/10.1016/j.rser.2021.110856>.
- [43] B.K. Sovacool, S. Griffiths, J. Kim, M. Bazilian, Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions, *Renew. Sust. Energ. Rev.* 141 (2021), 110759, <https://doi.org/10.1016/j.rser.2021.110759>.
- [44] M.J. Grant, A. Booth, A typology of reviews: an analysis of 14 review types and associated methodologies, *Health Inf. Libr. J.* 26 (2009) 91–108, <https://doi.org/10.1111/j.1471-1842.2009.00848.x>.
- [45] N.R. Haddaway, P. Woodcock, B. Macura, A. Collins, Making literature reviews more reliable through application of lessons from systematic reviews, *Conserv. Biol.* 29 (2015) 1596–1605, <https://doi.org/10.1111/cobi.12541>.
- [46] M. Petticrew, H. Roberts, *Systematic Reviews in the Social Sciences: A Practical Guide*, John Wiley & Sons, 2008.

[47] S. Sorrell, Improving the evidence base for energy policy: the role of systematic reviews, *Energy Policy* 35 (2007) 1858–1871, <https://doi.org/10.1016/j.enpol.2006.06.008>.

[48] B.K. Sovacool, J. Axsen, S. Sorrell, Promoting novelty, rigor, and style in energy social science: towards codes of practice for appropriate methods and research design, *Energy Res. Soc. Sci.* 45 (2018) 12–42, <https://doi.org/10.1016/j.erss.2018.07.007>.

[49] B.K. Sovacool, D.J. Hess, *Ordering theories: typologies and conceptual frameworks for sociotechnical change*, *Soc. Stud. Sci.* 47 (2017) 703–750.

[50] D.J. Hess, B.K. Sovacool, Sociotechnical matters: reviewing and integrating science and technology studies with energy social science, *Energy Res. Soc. Sci.* 65 (2020), 101462.

[51] A. Hasanbeigi, M. Arens, L. Price, Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical review, *Renew. Sust. Energ. Rev.* 33 (2014) 645–658, <https://doi.org/10.1016/j.rser.2014.02.031>.

[52] D. Gielen, D. Saygin, E. Taibi, J.P. Birat, Renewables-based decarbonization and relocation of iron and steel making: a case study, *J. Ind. Ecol.* 24 (2020) 1113–1125, <https://doi.org/10.1111/jiec.12997>.

[53] IEA, *World Energy Balances 2018 Edition*. Paris, 2018.

[54] J.P. Birat, D. Maizières-lès-Metz, *Global technology roadmap for CCS in industry: steel sectorial report*, in: *Maizières-Lès-Metz: UNIDO and ArcelorMittal*, 2010.

[55] W. Xu, B. Wan, T. Zhu, M. Shao, CO<sub>2</sub> emissions from China's iron and steel industry, *J. Clean. Prod.* 139 (2016) 1504–1511, <https://doi.org/10.1016/j.jclepro.2016.08.107>.

[56] P.W. Griffin, G.P. Hammond, Industrial energy use and carbon emissions reduction in the iron and steel sector: a UK perspective, *Appl. Energy* 249 (2019) 109–125, <https://doi.org/10.1016/j.apenergy.2019.04.148>.

[57] P.W. Griffin, G.P. Hammond, Analysis of the potential for energy demand and carbon emissions reduction in the iron and steel sector, *Energy Procedia* 158 (2019) 3915–3922, <https://doi.org/10.1016/j.egypro.2019.01.852>.

[58] T. Kuramochi, Assessment of mid-term CO<sub>2</sub> emissions reduction potential in the iron and steel industry: a case of Japan, *J. Clean. Prod.* 132 (2016) 81–97, <https://doi.org/10.1016/j.jclepro.2015.02.055>.

[59] Y. Zhang, L. Gu, X. Guo, Carbon audit evaluation system and its application in the iron and steel enterprises in China, *J. Clean. Prod.* 248 (2020), 119204, <https://doi.org/10.1016/j.jclepro.2019.119204>.

[60] S. Juntueng, S. Towprayoon, S. Chiarakorn, Energy and carbon dioxide intensity of Thailand's steel industry and greenhouse gas emission projection toward the year 2050, *Resour. Conserv. Recycl.* 87 (2014) 46–56, <https://doi.org/10.1016/j.resconrec.2014.03.014>.

[61] N. Pardo, J.A. Moya, Prospective scenarios on energy efficiency and CO<sub>2</sub> emissions in the European Iron & Steel industry, *Energy* 54 (2013) 113–128, <https://doi.org/10.1016/j.energy.2013.03.015>.

[62] C.-C. Hsu, S.-L. Lo, The potential for carbon abatement in Taiwan's steel industry and an analysis of carbon abatement trends, *Renew. Sust. Energ. Rev.* 69 (2017) 1312–1323, <https://doi.org/10.1016/j.rser.2016.12.046>.

[63] B.J. van Ruijven, D.P. van Vuuren, W. Boskaljon, M.L. Neelis, D. Saygin, M. K. Patel, Long-term model-based projections of energy use and CO<sub>2</sub> emissions from the global steel and cement industries, *Resour. Conserv. Recycl.* 112 (2016) 15–36, <https://doi.org/10.1016/j.resconrec.2016.04.016>.

[64] I. Hidalgo, L. Szabo, J. Carlos Ciscar, A. Soria, Technological prospects and CO<sub>2</sub> emission trading analyses in the iron and steel industry: a global model, *Energy* 30 (2005) 583–610, <https://doi.org/10.1016/j.energy.2004.05.022>.

[65] R. Jing, M.W. Yasir, J. Qian, Z. Zhang, Assessments of greenhouse gas (GHG) emissions from stainless steel production in China using two evaluation approaches, *Environ. Prog. Sustain. Energy* 38 (2019) 47–55, <https://doi.org/10.1002/ep.13125>.

[66] W.L. Keplinger, T. Tappeiner, Solid recovered fuels in the steel industry, *Waste Manag. Res.* 30 (2012) 450–453, <https://doi.org/10.1177/0734242X11426174>.

[67] M. Abdul Quader, S. Ahmed, S.Z. Dawal, Y. Nukman, Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO<sub>2</sub>) steelmaking (ULCOS) program, *Renew. Sust. Energ. Rev.* 55 (2016) 537–549, <https://doi.org/10.1016/j.rser.2015.10.101>.

[68] EC. Ultra-Low CO<sub>2</sub> steelmaking n.d. <https://cordis.europa.eu/project/id/515960> (accessed October 30, 2021).

[69] M. Åhman, O. Olsson, V. Vogl, B. Nyqvist, A. Maltais, L.J. Nilsson, et al., *HYBRIT in Context: Stockholm Environment Institute*, 2018.

[70] T. Buerger, J. Prammer, Hydrogen steelmaking: technology options and R&D projects, *BHM Berg-Und Hüttenmännische Monatshefte* 164 (2019) 447–451, <https://doi.org/10.1007/s00501-019-00908-8>.

[71] A. Abdelfghany, D.-Q. Fan, M. Elzohairy, H.Y. Sohn, Experimental investigation and computational fluid dynamics simulation of a novel flash ironmaking process based on partial combustion of natural gas in a reactor, *Steel Res. Int.* 90 (2019) 1900126, <https://doi.org/10.1002/srin.201900126>.

[72] S. Griffiths, B.K. Sovacool, J. Kim, M. Bazilian, J.M. Uratani, *Industrial decarbonization via hydrogen: a critical and systematic review of developments, socio-technical systems and policy options*, *Energy Res. Soc. Sci.* 80 (2021), 102208.

[73] X. Chen, X. Chen, J. She, M. Wu, A hybrid just-in-time soft sensor for carbon efficiency of iron ore sintering process based on feature extraction of cross-sectional frames at discharge end, *J. Process Control* 54 (2017) 14–24, <https://doi.org/10.1016/j.jprocont.2017.01.006>.

[74] L. Chen, B. Yang, X. Shen, Z. Xie, F. Sun, Thermodynamic optimization opportunities for the recovery and utilization of residual energy and heat in China's iron and steel industry: a case study, *Appl. Therm. Eng.* 86 (2015) 151–160, <https://doi.org/10.1016/j.applthermaleng.2015.04.026>.

[75] Z.C. Guo, Z.X. Fu, Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China, *Energy* 35 (2010) 4356–4360, <https://doi.org/10.1016/j.energy.2009.04.008>.

[76] K. Dahlström, P. Elkins, Eco-efficiency trends in the UK steel and aluminum industries: differences between resource efficiency and resource productivity, *J. Ind. Ecol.* 9 (2005) 171–188, <https://doi.org/10.1162/108819805775247954>.

[77] N. Bhadbhade, M.J.S. Zuberi, M.K. Patel, A bottom-up analysis of energy efficiency improvement and CO<sub>2</sub> emission reduction potentials for the swiss metals sector, *Energy* 181 (2019) 173–186, <https://doi.org/10.1016/j.energy.2019.05.172>.

[78] H. Na, T. Du, W. Sun, J. Sun, J. He, Evaluation and improvement of energy utilization efficiency in typical iron and steel smelting route based on input-use-end model, *Energy Technol.* 8 (2020) 1–12, <https://doi.org/10.1002/ente.201901230>.

[79] H. Zhang, L. Dong, H. Li, T. Fujita, S. Ohnishi, Q. Tang, Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis, *Energy Policy* 61 (2013) 1400–1411, <https://doi.org/10.1016/j.enpol.2013.05.066>.

[80] M. Arens, E. Worrell, Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption, *Energy* 73 (2014) 968–977, <https://doi.org/10.1016/j.energy.2014.06.112>.

[81] W.R. Morrow, A. Hasanbeigi, J. Sathaye, T. Xu, Assessment of energy efficiency improvement and CO<sub>2</sub> emission reduction potentials in India's cement and iron & steel industries, *J. Clean. Prod.* 65 (2014) 131–141, <https://doi.org/10.1016/j.jclepro.2013.07.022>.

[82] J.A. Moya, N. Pardo, The potential for improvements in energy efficiency and CO<sub>2</sub> emissions in the EU27 iron and steel industry under different payback periods, *J. Clean. Prod.* 52 (2013) 71–83, <https://doi.org/10.1016/j.jclepro.2013.02.028>.

[83] S. Jahanshahi, A. Deev, N. Haque, L. Lu, J. Mathieson, T. Norgate, et al., Recent progress in R & D on use sustainable biomass/designer chars for steel production, in: *Proceeding Innov Ironmak Technol Futur Int Collab Overcome Energy Resour Restrict Accord with Environ Tokyo*, JSPS, Japan, 2014.

[84] E. Mousa, C. Wang, J. Riesbeck, M. Larsson, Biomass applications in iron and steel industry: An overview of challenges and opportunities, *Renew. Sust. Energ. Rev.* 65 (2016) 1247–1266, <https://doi.org/10.1016/j.rser.2016.07.061>.

[85] D. Gielen, D. Saygin, E. Taibi, J. Birat, Renewables-based decarbonization and relocation of iron and steel making: a case study, *J. Ind. Ecol.* 24 (2020) 1113–1125.

[86] M. Flores-Granobles, M. Saefs, Minimizing CO<sub>2</sub> emissions with renewable energy: a comparative study of emerging technologies in the steel industry, *Energy Environ. Sci.* 13 (2020) 1923–1932.

[87] S. Chalk, S.W. Snyder, Sustainable, Net-Zero Carbon Steelmaking Utilizing Nuclear and Renewable-based Integrated Energy Systems, Idaho National Lab. (INL), Idaho Falls, ID (United States), 2021.

[88] IEA, India. <https://www.iea.org/countries/india>, 2022. (Accessed 25 February 2022).

[89] M. Ren, P. Lu, X. Liu, M.S. Hossain, Y. Fang, T. Hanaoka, et al., Decarbonizing China's iron and steel industry from the supply and demand sides for carbon neutrality, *Appl. Energy* 298 (2021), 117209, <https://doi.org/10.1016/j.apenergy.2021.117209>.

[90] J. Lee, M. Bazilian, B. Sovacool, S. Greene, Responsible or reckless? A critical review of the environmental and climate assessments of mineral supply chains, *Environ. Res. Lett.* 15 (2020), 103009, <https://doi.org/10.1088/1748-9326/ab9f8c>.

[91] M.A. Quader, S. Ahmed, R.A.R. Ghazilla, S. Ahmed, M. Dahari, A comprehensive review on energy efficient CO<sub>2</sub> breakthrough technologies for sustainable green iron and steel manufacturing, *Renew. Sust. Energ. Rev.* 50 (2015) 594–614, <https://doi.org/10.1016/j.rser.2015.05.026>.

[92] L. Li, K. Morishita, T. Takarada, Light fuel gas production from nascent coal volatiles using a natural limonite ore, *Fuel* 86 (2007) 1570–1576, <https://doi.org/10.1016/j.fuel.2006.10.024>.

[93] L. Deng, T.A. Adams II, Optimization of coke oven gas desulfurization and combined cycle power plant electricity generation, *Ind. Eng. Chem. Res.* 57 (2018) 12816–12828.

[94] J. Li, W. Cheng, Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification, *Int. J. Hydrog. Energy* 45 (2020) 27979–27993.

[95] R. Razzaq, C. Li, S. Zhang, Coke oven gas: Availability, properties, purification, and utilization in China, *Fuel* 113 (2013) 287–299, <https://doi.org/10.1016/j.fuel.2013.05.070>.

[96] J.M. Bermúdez, A. Arenillas, R. Luque, J.A. Menéndez, An overview of novel technologies to valorize coke oven gas surplus, *Fuel Process. Technol.* 110 (2013) 150–159, <https://doi.org/10.1016/j.fuproc.2012.12.007>.

[97] H. Zhang, H. Wang, X. Zhu, Y.-J. Qiu, K. Li, R. Chen, et al., A review of waste heat recovery technologies towards molten slag in steel industry, *Appl. Energy* 112 (2013) 956–966, <https://doi.org/10.1016/j.apenergy.2013.02.019>.

[98] POSCO, *Carbon Report 2013*. Seoul, 2013.

[99] C. Wang, M. Larsson, C. Ryman, C.-E. Grip, J.-O. Wikström, A. Johnsson, et al., A model on CO<sub>2</sub> emission reduction in integrated steelmaking by optimization methods, *Int. J. Energy Res.* 32 (2008) 1092–1106.

[100] B. Lu, G. Chen, D. Chen, W. Yu, An energy intensity optimization model for production system in iron and steel industry, *Appl. Therm. Eng.* 100 (2016) 285–295, <https://doi.org/10.1016/j.applthermaleng.2016.01.064>.

[101] Q. Zhang, Z. Wei, J. Ma, Z. Qiu, T. Du, Optimization of energy use with CO<sub>2</sub> emission reducing in an integrated iron and steel plant, *Appl. Therm. Eng.* 157 (2019) 113635.

[102] S. Kumar, V. Drozd, A. Durygin, S.K. Saxena, Capturing CO<sub>2</sub> Emissions in the Iron Industries using a magnetite-iron mixture, *Energy Technol.* 4 (2016) 560–564, <https://doi.org/10.1002/ente.201500451>.

[103] S. Tian, J. Jiang, X. Chen, F. Yan, K. Li, Direct gas-solid carbonation kinetics of steel slag and the contribution to insitu sequestration of flue gas CO<sub>2</sub> in steel-making plants, *ChemSusChem* 6 (2013) 2348–2355, <https://doi.org/10.1002/cssc.201300436>.

[104] L. Xi, L. Qianguo, M. Hasan, L. Ming, L. Qiang, L. Jia, et al., Assessing the economics of CO<sub>2</sub> capture in China's iron/steel sector: a case study, *Energy Procedia* 158 (2019) 3715–3722, <https://doi.org/10.1016/j.egypro.2019.01.886>.

[105] D. Demaillly, P. Quirion, European emission trading scheme and competitiveness: a case study on the iron and steel industry, *Energy Econ.* 30 (2008) 2009–2027, <https://doi.org/10.1016/j.eneco.2007.01.020>.

[106] A. Arasto, E. Tsupari, J. Kärki, E. Pisilä, L. Sorsamäki, Post-combustion capture of CO<sub>2</sub> at an integrated steel mill – part i: technical concept analysis, *Int. J. Greenh. Gas Control* 16 (2013) 271–277, <https://doi.org/10.1016/j.ijggc.2012.08.018>.

[107] A. Arasto, E. Tsupari, J. Kärki, J. Lilja, M. Sihvonen, Oxygen blast furnace with CO<sub>2</sub> capture and storage at an integrated steel mill—part i: technical concept analysis, *Int. J. Greenh. Gas Control* 30 (2014) 140–147, <https://doi.org/10.1016/j.ijggc.2014.09.004>.

[108] K. Han, C.K. Ahn, M.S. Lee, Performance of an ammonia-based CO<sub>2</sub> capture pilot facility in iron and steel industry, *Int. J. Greenh. Gas Control* 27 (2014) 239–246, <https://doi.org/10.1016/j.ijggc.2014.05.014>.

[109] E. Tsupari, J. Kärki, A. Arasto, J. Lilja, K. Kinnunen, M. Sihvonen, Oxygen blast furnace with CO<sub>2</sub> capture and storage at an integrated steel mill – part II: economic feasibility in comparison with conventional blast furnace highlighting sensitivities, *Int. J. Greenh. Gas Control* 32 (2015) 189–196, <https://doi.org/10.1016/j.ijggc.2014.11.007>.

[110] D.-A. Chisalita, L. Petrescu, P. Cobden, H.A.J. Eric van Dijk, A.-M. Cormos, C.-C. Cormos, Assessing the environmental impact of an integrated steel mill with post-combustion CO<sub>2</sub> capture and storage using the LCA methodology, *J. Clean. Prod.* 211 (2019) 1015–1025, <https://doi.org/10.1016/j.jclepro.2018.11.256>.

[111] R. Riccardi, F. Bonenti, E. Allevi, C. Avanzi, A. Gnudi, The steel industry: a mathematical model under environmental regulations, *Eur. J. Oper. Res.* 242 (2015) 1017–1027, <https://doi.org/10.1016/j.ejor.2014.10.057>.

[112] Worldsteel Association, Fact Sheet: CO<sub>2</sub> Breakthrough Programs, Brussels, 2009.

[113] H.J. Kim, C. McMillan, G.A. Keoleian, S.J. Skerlos, Greenhouse gas emissions payback for lightweighted vehicles using aluminum and high-strength steel, *J. Ind. Ecol.* 14 (2010) 929–946, <https://doi.org/10.1111/j.1530-9290.2010.00283.x>.

[114] Worldsteel Association, Steel - The Permanent Material in the Circular Economy, Brussels, 2016.

[115] C. Bataille, Low and Zero Emissions in the Steel and Cement Industries: Barriers, Technologies and Policies, 2020.

[116] J. Oda, K. Akimoto, T. Tomoda, Long-term global availability of steel scrap, *Resour. Conserv. Recycl.* 81 (2013) 81–91, <https://doi.org/10.1016/j.resconrec.2013.10.002>.

[117] S. Pauliuk, R.L. Milford, D.B. Müller, J.M. Allwood, The steel scrap age, *Environ. Sci. Technol.* 47 (2013) 3448–3454.

[118] P. Wang, M. Ryberg, Y. Yang, K. Feng, S. Kara, M. Hauschild, et al., Efficiency stagnation in global steel production urges joint supply-and demand-side mitigation efforts, *Nat. Commun.* 12 (2021) 1–11.

[119] S. Biswal, F. Pahlevani, V. Sahajwalla, Wastes as resources in steelmaking industry — current trends, *Curr. Opin. Green Sustain. Chem.* 26 (2020), 100377, <https://doi.org/10.1016/j.cogsc.2020.100377>.

[120] Y. Lan, Q. Liu, F. Meng, D. Niu, H. Zhao, Optimization of magnetic separation process for iron recovery from steel slag, *J. Iron Steel Res. Int.* 24 (2017) 165–170, [https://doi.org/10.1016/S1006-706X\(17\)30023-7](https://doi.org/10.1016/S1006-706X(17)30023-7).

[121] S. Zhou, Y. Wei, B. Li, H. Wang, Cleaner recycling of iron from waste copper slag by using walnut shell char as green reductant, *J. Clean. Prod.* 217 (2019) 423–431, <https://doi.org/10.1016/j.jclepro.2019.01.184>.

[122] K. Li, S. Ping, H. Wang, W. Ni, Recovery of iron from copper slag by deep reduction and magnetic beneficiation, *Int. J. Miner. Metall. Mater.* 20 (2013) 1035–1041.

[123] J.H. Heo, Y. Chung, J.H. Park, Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process, *J. Clean. Prod.* 137 (2016) 777–787, <https://doi.org/10.1016/j.jclepro.2016.07.154>.

[124] C.Charles Xu, Cang D. Qiang, A brief overview of low CO<sub>2</sub> emission technologies for iron and steel making, *J. Iron Steel Res. Int.* 17 (2010) 1–7, [https://doi.org/10.1016/S1006-706X\(10\)60064-7](https://doi.org/10.1016/S1006-706X(10)60064-7).

[125] K. He, L. Wang, A review of energy use and energy-efficient technologies for the iron and steel industry, *Renew. Sust. Energ. Rev.* 70 (2017) 1022–1039, <https://doi.org/10.1016/j.rser.2016.12.007>.

[126] A.A. Ramírez-Santos, C. Castel, E. Favre, A review of gas separation technologies within emission reduction programs in the iron and steel sector: Current application and development perspectives, *Sep. Purif. Technol.* 194 (2018) 425–442, <https://doi.org/10.1016/j.seppur.2017.11.063>.

[127] N. Karali, W.Y. Park, M. McNeil, Modeling technological change and its impact on energy savings in the U.S. iron and steel sector, *Appl. Energy* 202 (2017) 447–458, <https://doi.org/10.1016/j.apenergy.2017.05.173>.

[128] Z. Fan, S.J. Friedmann, Low-carbon production of iron and steel: technology options, economic assessment, and policy, *Joule* (2021), <https://doi.org/10.1016/j.joule.2021.02.018>.

[129] P. Cavaliere, Clean ironmaking and steelmaking processes: efficient technologies for greenhouse emissions abatement, in: *Clean Ironmak. Steelmak. Process.*, Springer, 2019, pp. 1–37.

[130] C. Bataille, M. Åhman, K. Neuhoff, L.J. Nilsson, M. Fischedick, S. Lechtenböhmer, et al., A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement, *J. Clean. Prod.* 187 (2018) 960–973, <https://doi.org/10.1016/j.jclepro.2018.03.107>.

[131] M. Axelson, I. Robson, T. Wyns, G. Khandekar, Breaking through-industrial low-CO<sub>2</sub> technologies on the Horizon, *Inst. Eur. Stud. Vrije Univ. Brussel* (2018).

[132] M. Hensmann, K. Meijer, M. Oles, Smart Carbon Usage, Process Integration and Carbon Capture and Usage, EU Ind. Day, Brussels, 2018.

[133] P. Wooders, C. Beaton, D. McDaniels, Annex B: Climate Strategies, 2011.

[134] M. Axelson, S. Oberthür, L.J. Nilsson, Emission reduction strategies in the EU steel industry: Implications for business model innovation, *J. Ind. Ecol.* 25 (2021) 390–402.

[135] D. Kushnir, T. Hansen, V. Vogl, M. Åhman, Adopting hydrogen direct reduction for the Swedish steel industry: a technological innovation system (TIS) study, *J. Clean. Prod.* 242 (2020), 118185.

[136] E. Worrell, P. Blinde, M. Neelis, E. Blomen, E.R. Masanet, Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry: An ENERGY STAR® Guide for Energy and Plant Managers, 2010.

[137] A.T. Ubando, W.H. Chen, R.R. Tan, S.R. Naqvi, Optimal integration of a biomass-based polygeneration system in an iron production plant for negative carbon emissions, *Int. J. Energy Res.* 44 (2020) 9350–9366, <https://doi.org/10.1002/er.4902>.

[138] K. Takeda, T. Anyashiki, T. Sato, N. Oyama, S. Watakabe, M. Sato, Recent developments and mid- and long-term CO<sub>2</sub> mitigation projects in ironmaking, *Steel Res. Int.* 82 (2011) 512–520, <https://doi.org/10.1002/srin.201100034>.

[139] L. Holappa, P. Taskinen, Process innovations and sustainability in Finnish metallurgical industries, *Trans. Inst. Min. Metall. Sect. C Miner. Process Extr. Metall.* 126 (2017) 70–80, <https://doi.org/10.1080/03719553.2016.1259197>.

[140] W. Sun, Q. Wang, Y. Zhou, J. Wu, Material and energy flows of the iron and steel industry: status quo, challenges and perspectives, *Appl. Energy* 268 (2020), 114946, <https://doi.org/10.1016/j.apenergy.2020.114946>.

[141] SNAM, IGU, BloombergNEF, Global Gas Report 2020, London, 2020.

[142] T.K. Blank, P. Molloy, Hydrogen's Decarbonization Impact for Industry, Basalt, CO, 2020.

[143] W. Hall, R. Millner, J. Rothberger, A. Singh, C.K. Shah, Green Steel through Hydrogen Direct Reduction: A Study on the Role of Hydrogen in the Indian Iron and Steel Sector, New Delhi, 2021.

[144] E. Karakaya, C. Nuur, L. Assbring, Potential transitions in the iron and steel industry in Sweden: towards a hydrogen-based future? *J. Clean. Prod.* 195 (2018) 651–663.

[145] J.K. Pandit, A. Qader, S. Lim, Cross-technology Scheme Options to Reduce Greenhouse Gas Emissions in a Steel Industry, 2021. Available SSRN 3821438.

[146] ArcelorMittal, Climate Action in Europe - Our carbon emissions reduction roadmap: 30% by 2030 and carbon neutral by 2050. <https://corporate-media.arcelormittal.com/media/b4wh4cd0/climate-action-in-europe.pdf>, 2021. (Accessed 30 October 2021).

[147] M. Draxler, J. Schenk, T. Bürgler, A. Sormann, in: *The Steel Industry in the European Union on the Crossroad to Carbon Lean Production—Status, Initiatives and Challenges* 165, BHM Berg-Und Hüttenmännische Monatshefte, 2020, pp. 221–226.

[148] A. Arasto, Techno-economic evaluation of significant CO<sub>2</sub> emission reductions in the iron and steel industry with CCS, in: *VTT Technical Research Centre of Finland*, 2015.

[149] A.A. Barde, J.F. Klausner, R. Mei, Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent, *Int. J. Hydrog. Energy* 41 (2016) 10103–10119.

[150] D. Spreitzer, J. Schenk, Reduction of iron oxides with hydrogen—a review, *Steel Res. Int.* 90 (2019) 1900108.

[151] Q. Chen, Y. Gu, Z. Tang, W. Wei, Y. Sun, Assessment of low-carbon iron and steel production with CO<sub>2</sub> recycling and utilization technologies: a case study in China, *Appl. Energy* 220 (2018) 192–207, <https://doi.org/10.1016/j.apenergy.2018.03.043>.

[152] K. De Ras, R. Van de Vijver, V.V. Galvita, G.B. Marin, K.M. Van Geem, Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering, *Curr. Opin. Chem. Eng.* 26 (2019) 81–87, <https://doi.org/10.1016/j.coche.2019.09.001>.

[153] M. Thema, F. Bauer, M. Sterner, Power-to-gas: electrolysis and methanation status review, *Renew. Sust. Energ. Rev.* 112 (2019) 775–787, <https://doi.org/10.1016/j.rser.2019.06.030>.

[154] Molten Oxide Electrolysis, in: <https://www.bostonmetal.com/moe-technology/#moe-process>, 2021. (Accessed 6 January 2021).

[155] W. Chen, X. Yin, D. Ma, A bottom-up analysis of China's iron and steel industrial energy consumption and CO<sub>2</sub> emissions, *Appl. Energy* 136 (2014) 1174–1183, <https://doi.org/10.1016/j.apenergy.2014.06.002>.

[156] J.C. Brunke, M. Blesl, A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry, *Energy Policy* 67 (2014) 431–446, <https://doi.org/10.1016/j.enpol.2013.12.024>.

[157] R. An, B. Yu, R. Li, Y.-M. Wei, Potential of energy savings and CO<sub>2</sub> emission reduction in China's iron and steel industry, *Appl. Energy* 226 (2018) 862–880, <https://doi.org/10.1016/j.apenergy.2018.06.044>.

[158] B.K. Sovacool, J. Kim, M. Yang, The hidden costs of energy and mobility: a global meta-analysis and research synthesis of electricity and transport externalities, *Energy Res. Soc. Sci.* 72 (2021), 101885, <https://doi.org/10.1016/j.erss.2020.101885>.

[159] E. Worrell, J.A. Laitner, M. Ruth, H. Finman, Productivity benefits of industrial energy efficiency measures, *Energy* 28 (2003) 1081–1098, [https://doi.org/10.1016/S0360-5442\(03\)00091-4](https://doi.org/10.1016/S0360-5442(03)00091-4).

[160] E. Worrell, J.A. Laitner, M. Ruth, H. Finman, Productivity benefits of industrial energy efficiency measures, *Energy* 28 (2003) 1081–1098, [https://doi.org/10.1016/S0360-5442\(03\)00091-4](https://doi.org/10.1016/S0360-5442(03)00091-4).

[161] M. Kirschen, V. Risonarta, H. Pfeifer, Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry, *Energy* 34 (2009) 1065–1072, <https://doi.org/10.1016/j.energy.2009.04.015>.

[162] S. Zhang, E. Worrell, W. Crijns-Graus, F. Wagner, J. Cofala, Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry, *Energy* 78 (2014) 333–345, <https://doi.org/10.1016/j.energy.2014.10.018>.

[163] D. Ma, W. Chen, X. Yin, L. Wang, Quantifying the co-benefits of decarbonisation in China's steel sector: an integrated assessment approach, *Appl. Energy* 162 (2016) 1225–1237, <https://doi.org/10.1016/j.apenergy.2015.08.005>.

[164] C. Wang, X. Zheng, W. Cai, X. Gao, P. Berrill, Unexpected water impacts of energy-saving measures in the iron and steel sector: tradeoffs or synergies? *Appl. Energy* 205 (2017) 1119–1127, <https://doi.org/10.1016/j.apenergy.2017.08.125>.

[165] A.N. Conejo, J.-P. Birat, A. Dutta, A review of the current environmental challenges of the steel industry and its value chain, *J. Environ. Manag.* 259 (2020), 109782, <https://doi.org/10.1016/j.jenvman.2019.109782>.

[166] Z. Du, B. Lin, Analysis of carbon emissions reduction of China's metallurgical industry, *J. Clean. Prod.* 176 (2018) 1177–1184, <https://doi.org/10.1016/j.jclepro.2017.11.178>.

[167] H. Yang, J. Liu, K. Jiang, J. Meng, D. Guan, Y. Xu, et al., Multi-objective analysis of the co-mitigation of CO<sub>2</sub> and PM<sub>2.5</sub> pollution by China's iron and steel industry, *J. Clean. Prod.* 185 (2018) 331–341, <https://doi.org/10.1016/j.jclepro.2018.02.092>.

[168] E. Cagno, A. Trianni, G. Spallina, F. Marchesani, Drivers for energy efficiency and their effect on barriers: empirical evidence from Italian manufacturing enterprises, *Energy Effic.* 10 (2017) 855–869.

[169] J.I. Chowdhury, Y. Hu, I. Haltas, N. Balta-Ozkan, L. Varga, Reducing industrial energy demand in the UK: a review of energy efficiency technologies and energy saving potential in selected sectors, *Renew. Sust. Energ. Rev.* 94 (2018) 1153–1178.

[170] T. Gerres, J.P. Chaves Ávila, P.L. Llamas, T.G. San Román, A review of cross-sector decarbonisation potentials in the European energy intensive industry, *J. Clean. Prod.* 210 (2019) 585–601, <https://doi.org/10.1016/j.jclepro.2018.11.036>.

[171] Samantha Gross, *The Challenge of Decarbonizing Heavy Industry*. Washington, D. C., 2021.

[172] IHS Markit, Steel Price Forecast and Market Outlook. <https://ihsmarkit.com/solutions/steel-forecast.html>, 2022. (Accessed 25 February 2022).

[173] V. Shatokha, Post-Soviet issues and sustainability of iron and steel industry in Eastern Europe, *Trans. Inst. Min. Metall. Sect. C Miner. Process Extr. Metall.* 126 (2017) 62–69, <https://doi.org/10.1080/03719553.2016.1251750>.

[174] Y. Li, L. Zhu, Cost of energy saving and CO<sub>2</sub> emissions reduction in China's iron and steel sector, *Appl. Energy* 130 (2014) 603–616, <https://doi.org/10.1016/j.apenergy.2014.04.014>.

[175] J.H. Wesseling, S. Lechtenböhmer, M. Åhman, L.J. Nilsson, E. Worrell, L. Coenen, The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research, *Renew. Sust. Energ. Rev.* 79 (2017) 1303–1313, <https://doi.org/10.1016/j.rser.2017.05.156>.

[176] T. Skoczkowski, E. Verdolini, S. Bielecki, M. Kochański, K. Korczak, A. Weglarz, Technology innovation system analysis of decarbonisation options in the EU steel industry, *Energy* 212 (2020), 118688, <https://doi.org/10.1016/j.energy.2020.118688>.

[177] J.W. Busby, S. Shidore, When decarbonization meets development: the sectoral feasibility of greenhouse gas mitigation in India, *Energy Res. Soc. Sci.* 23 (2017) 60–73.

[178] A.S.M.M. Hasan, M.T. Hoq, P. Thollander, Energy management practices in Bangladesh's iron and steel industries, *Energy Strateg. Rev.* 22 (2018) 230–236, <https://doi.org/10.1016/j.esr.2018.09.002>.

[179] E. Worrell, L. Price, An integrated benchmarking and energy savings tool for the iron and steel industry, *Int. J. Green Energy* 3 (2006) 117–126, <https://doi.org/10.1080/01971520500543962>.

[180] T. Mikunda, T. Kober, H. de Coninck, M. Bazilian, H. Rösler, B. van der Zwaan, Designing policy for deployment of CCS in industry, *Clim. Policy* 14 (2014) 665–676, <https://doi.org/10.1080/14693062.2014.905441>.

[181] M. Åhman, O. Olsson, V. Vogl, B. Nyqvist, A. Maltais, L.J. Nilsson, et al., Hydrogen steelmaking for a low-carbon economy, *Stockholm Environ. Inst. Stockholm* (2018).

[182] M. Arens, Policy support for and R&D activities on digitising the European steel industry, *Resour. Conserv. Recycl.* 143 (2019) 244–250, <https://doi.org/10.1016/j.resconrec.2018.12.020>.

[183] K. Neuhoff, W. Acworth, A. Aycigier, F. Branger, I. Christmas, M. Haussner, et al., Experience with low-carbon opportunities for steel sector, *Clim. Strat. London* (2014).

[184] V. Vogl, M. Åhman, L.J. Nilsson, The making of green steel in the EU: a policy evaluation for the early commercialization phase, *Clim. Policy* 21 (2021) 78–92, <https://doi.org/10.1080/14693062.2020.1803040>.

[185] C. Peñasco, L.D. Anadón, E. Verdolini, Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments, *Nat. Clim. Chang.* 11 (2021) 257–265.

[186] V. Vogl, O. Olsson, B. Nyqvist, Phasing out the blast furnace to meet global climate targets, *Joule* 5 (2021) 2646–2662.

[187] L.J. Nilsson, F. Bauer, M. Åhman, Andersson FNG, C. Bataille, S. de la Rue du Can, An industrial policy framework for transforming energy and emissions intensive industries towards zero emissions, *Clim. Policy* 21 (2021) 1053–1065.

[188] CCC, *Net Zero Technical Report*. London, 2019.

[189] U. Sreenivasamurthy, Domestic climate policy for the Indian steel sector, *Clim. Policy* 9 (2009) 517–528, <https://doi.org/10.3763/cpol.2009.0640>.

[190] M. Ruth, A. Amato, B. Davidsdottir, Impacts of market-based climate change policy on the U.S. iron and steel industry, *Energy Sour.* 22 (2000) 269–280, <https://doi.org/10.1080/00908310050014054>.

[191] J.-B. Huang, Y.-M. Luo, C. Feng, An overview of carbon dioxide emissions from China's ferrous metal industry: 1991–2030, *Resour. Policy* 62 (2019) 541–549, <https://doi.org/10.1016/j.respol.2018.10.010>.

[192] A. Kazaglis, A. Tam, J. Eis, J. Watson, N. Hughes, R. Gross, et al., *Accelerating Innovation Towards Net Zero Emissions*, 2019.

[193] K. Lee, J. Ki, Rise of latecomers and catch-up cycles in the world steel industry, *Res. Policy* 46 (2017) 365–375, <https://doi.org/10.1016/j.respol.2016.09.010>.

[194] A. Öhman, E. Karakaya, F. Urban, Enabling the transition to a fossil-free steel sector: the conditions for technology transfer for hydrogen-based steelmaking in Europe, *Energy Res. Soc. Sci.* 84 (2022), 102384.

[195] Y. Wang, H. Li, Q. Song, Y. Qi, The consequence of energy policies in China: a case study of the iron and steel sector, *Resour. Conserv. Recycl.* 117 (2017) 66–73, <https://doi.org/10.1016/j.resconrec.2015.07.007>.

[196] D. Gielen, Y. Moriguchi, Modelling CO<sub>2</sub> policies for the Japanese iron and steel industry, *Environ. Model Softw.* 17 (2002) 481–495, [https://doi.org/10.1016/S1364-8152\(02\)00012-9](https://doi.org/10.1016/S1364-8152(02)00012-9).

[197] S. Luh, S. Budinis, S. Giarola, T.J. Schmidt, A. Hawkes, Long-term development of the industrial sector—case study about electrification, fuel switching, and CCS in the USA, *Comput. Chem. Eng.* 133 (2020), 106602.

[198] D. Moya, S. Budinis, S. Giarola, A. Hawkes, Agent-based scenarios comparison for assessing fuel-switching investment in long-term energy transitions of the India's industry sector, *Appl. Energy* 274 (2020), 115295, <https://doi.org/10.1016/j.apenergy.2020.115295>.

[199] L. Ren, S. Zhou, T. Peng, X. Ou, A review of CO<sub>2</sub> emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China, *Renew. Sust. Energ. Rev.* 143 (2021), 110846, <https://doi.org/10.1016/j.rser.2021.110846>.

[200] G.P. Thiel, A.K. Stark, To decarbonize industry, we must decarbonize heat, *Joule* 5 (3) (2021) 531–550, <https://doi.org/10.1016/j.joule.2020.12.007>.

[201] S. Pauliuk, N. Heeren, Material efficiency and its contribution to climate change mitigation in Germany: a deep decarbonization scenario analysis until 2060, *J. Ind. Ecol.* 25 (2021) 479–493.

[202] P.W. Griffin, G.P. Hammond, The prospects for 'green steel'making in a net-zero economy: a UK perspective, *Glob. Trans.* 3 (2021) 72–86.

[203] W. Liu, H. Zuo, J. Wang, Q. Xue, B. Ren, F. Yang, The production and application of hydrogen in steel industry, *Int. J. Hydron. Energy* 46 (2021) 10548–10569, <https://doi.org/10.1016/j.ijhydene.2020.12.123>.

[204] A. Bhaskar, M. Assadi, Somehsaraei H. Nikpey, Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen, *Energies* 13 (2020) 758.

[205] W. Hall, T. Spencer, S. Kumar, Towards a Low Carbon Steel Sector: Overview of the Changing Market, Technology and Policy Context for Indian Steel. New Delhi, 2020.

[206] N.A. Ryan, S.A. Miller, S.J. Skerlos, D.R. Cooper, Reducing CO<sub>2</sub> emissions from US steel consumption by 70% by 2050, *Environ. Sci. Technol.* 54 (2020) 14598–14608.

[207] I. Karlsson, J. Rootzén, A. Toktarova, M. Odenberger, F. Johnsson, L. Göransson, Roadmap for decarbonization of the building and construction industry—a supply chain analysis including primary production of steel and cement, *Energies* 13 (2020), <https://doi.org/10.3390/en13164136>.

[208] X. Su, X. Zhang, A detailed analysis of the embodied energy and carbon emissions of steel-construction residential buildings in China, *Energy Build.* 119 (2016) 323–330, <https://doi.org/10.1016/j.enbuild.2016.03.070>.

[209] Y. Tian, Q. Zhu, Y. Geng, An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry, *Energy Policy* 56 (2013) 352–361, <https://doi.org/10.1016/j.enpol.2012.12.068>.

[210] B.J. O'Callaghan, E. Murdock, *Are We Building Back Better?: Evidence from 2020 and Pathways for Inclusive Green Recovery Spending*. Geneva, 2021.

[211] J.-H. Lee, J. Woo, Green new deal policy of South Korea: policy innovation for a sustainability transition, *Sustain* 12 (2020), <https://doi.org/10.3390/su122310191>.

[212] IEA, *Energy Technology Perspectives 2020*. Paris, 2020.